Dependent percolation in two dimensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

P.N. Balister, B. Bollobás, A.M. Stacey

ABSTRACT

For a natural number k, define an oriented site percolation on ℤ2 as follows. Let xi, yj be independent random variables with values uniformly distributed in {1, …, k}. Declare a site (i, j) ∈ℤ2closed if xi = yj, and open otherwise. Peter Winkler conjectured some years ago that if k≥ 4 then with positive probability there is an infinite oriented path starting at the origin, all of whose sites are open. I.e., there is an infinite path P = (i0, j0)(i1, j1) · · · such that 0 = i0≤i1≤· · ·, 0 = j0≤j1≤· · ·, and each site (in, jn) is open. Rather surprisingly, this conjecture is still open: in fact, it is not known whether the conjecture holds for any value of k. In this note, we shall prove the weaker result that the corresponding assertion holds in the unoriented case: if k≤ 4 then the probability that there is an infinite path that starts at the origin and consists only of open sites is positive. Furthermore, we shall show that our method can be applied to a wide variety of distributions of (xi) and (yj). Independently, Peter Winkler [14] has recently proved a variety of similar assertions by different methods. More... »

PAGES

495-513

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00008732

DOI

http://dx.doi.org/10.1007/pl00008732

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008559166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Memphis", 
          "id": "https://www.grid.ac/institutes/grid.56061.34", 
          "name": [
            "Department of Mathematics, University of Memphis, Memphis, TN 38152, USA. e-mail: balistep@msci.memphis.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balister", 
        "givenName": "P.N.", 
        "id": "sg:person.012406565211.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406565211.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Memphis", 
          "id": "https://www.grid.ac/institutes/grid.56061.34", 
          "name": [
            "Department of Mathematics, University of Memphis, Memphis, TN 38152, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollob\u00e1s", 
        "givenName": "B.", 
        "id": "sg:person.057635127.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.057635127.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Pure Mathematics and Statistics, Peterhouse, University of Cambridge, Cambridge CB2 1RD, England. email: A.M.Stacey@dpmms.cam.ac.uk, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stacey", 
        "givenName": "A.M.", 
        "id": "sg:person.015374467211.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015374467211.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-015-8326-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039398143", 
          "https://doi.org/10.1007/978-94-015-8326-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0406029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176987791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56478-9_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085932017", 
          "https://doi.org/10.1007/978-3-642-56478-9_18"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-08", 
    "datePublishedReg": "2000-08-01", 
    "description": "For a natural number k, define an oriented site percolation on \u21242 as follows. Let xi, yj be independent random variables with values uniformly distributed in {1, \u2026, k}. Declare a site (i, j) \u2208\u21242closed if xi = yj, and open otherwise. Peter Winkler conjectured some years ago that if k\u2265 4 then with positive probability there is an infinite oriented path starting at the origin, all of whose sites are open. I.e., there is an infinite path P = (i0, j0)(i1, j1) \u00b7 \u00b7 \u00b7 such that 0 = i0\u2264i1\u2264\u00b7 \u00b7 \u00b7, 0 = j0\u2264j1\u2264\u00b7 \u00b7 \u00b7, and each site (in, jn) is open. Rather surprisingly, this conjecture is still open: in fact, it is not known whether the conjecture holds for any value of k. In this note, we shall prove the weaker result that the corresponding assertion holds in the unoriented case: if k\u2264 4 then the probability that there is an infinite path that starts at the origin and consists only of open sites is positive. Furthermore, we shall show that our method can be applied to a wide variety of distributions of (xi) and (yj). Independently, Peter Winkler [14] has recently proved a variety of similar assertions by different methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00008732", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "117"
      }
    ], 
    "name": "Dependent percolation in two dimensions", 
    "pagination": "495-513", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28c6e92c1356fe6237966978432d112280738dfe02f50c054ae578d14445b406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00008732"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008559166"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00008732", 
      "https://app.dimensions.ai/details/publication/pub.1008559166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/PL00008732"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00008732'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00008732'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00008732'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00008732'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00008732 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d8e79c15aed42859db98058c084e97c
4 schema:citation sg:pub.10.1007/978-3-642-56478-9_18
5 sg:pub.10.1007/978-94-015-8326-8_8
6 https://doi.org/10.1137/0406029
7 https://doi.org/10.1214/aop/1176987791
8 schema:datePublished 2000-08
9 schema:datePublishedReg 2000-08-01
10 schema:description For a natural number k, define an oriented site percolation on ℤ2 as follows. Let xi, yj be independent random variables with values uniformly distributed in {1, …, k}. Declare a site (i, j) ∈ℤ2closed if xi = yj, and open otherwise. Peter Winkler conjectured some years ago that if k≥ 4 then with positive probability there is an infinite oriented path starting at the origin, all of whose sites are open. I.e., there is an infinite path P = (i0, j0)(i1, j1) · · · such that 0 = i0≤i1≤· · ·, 0 = j0≤j1≤· · ·, and each site (in, jn) is open. Rather surprisingly, this conjecture is still open: in fact, it is not known whether the conjecture holds for any value of k. In this note, we shall prove the weaker result that the corresponding assertion holds in the unoriented case: if k≤ 4 then the probability that there is an infinite path that starts at the origin and consists only of open sites is positive. Furthermore, we shall show that our method can be applied to a wide variety of distributions of (xi) and (yj). Independently, Peter Winkler [14] has recently proved a variety of similar assertions by different methods.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N77e63de487dc4b9a9b1b173936284ced
15 Nab1b2d6e20e648b4bde3885519c2f38e
16 sg:journal.1053886
17 schema:name Dependent percolation in two dimensions
18 schema:pagination 495-513
19 schema:productId N2f7de4aa486a4748978569f8aea8fec3
20 N6d6bd0a616b24eab900969ca730596e7
21 Nb46bc1a16236444ea58214f4c7b49784
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008559166
23 https://doi.org/10.1007/pl00008732
24 schema:sdDatePublished 2019-04-10T21:31
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na773d71f44fc4b0295d8ab2aa1a0a159
27 schema:url http://link.springer.com/10.1007/PL00008732
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N2f7de4aa486a4748978569f8aea8fec3 schema:name dimensions_id
32 schema:value pub.1008559166
33 rdf:type schema:PropertyValue
34 N2fbe8faf54cd4b5f9a4f6b0ca215b21c rdf:first sg:person.057635127.87
35 rdf:rest Ncb1953366cad4295964a835a2b76f1d3
36 N3d8e79c15aed42859db98058c084e97c rdf:first sg:person.012406565211.23
37 rdf:rest N2fbe8faf54cd4b5f9a4f6b0ca215b21c
38 N6d6bd0a616b24eab900969ca730596e7 schema:name doi
39 schema:value 10.1007/pl00008732
40 rdf:type schema:PropertyValue
41 N77e63de487dc4b9a9b1b173936284ced schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 Na773d71f44fc4b0295d8ab2aa1a0a159 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nab1b2d6e20e648b4bde3885519c2f38e schema:volumeNumber 117
46 rdf:type schema:PublicationVolume
47 Nb46bc1a16236444ea58214f4c7b49784 schema:name readcube_id
48 schema:value 28c6e92c1356fe6237966978432d112280738dfe02f50c054ae578d14445b406
49 rdf:type schema:PropertyValue
50 Ncb1953366cad4295964a835a2b76f1d3 rdf:first sg:person.015374467211.17
51 rdf:rest rdf:nil
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1053886 schema:issn 0178-8051
59 1432-2064
60 schema:name Probability Theory and Related Fields
61 rdf:type schema:Periodical
62 sg:person.012406565211.23 schema:affiliation https://www.grid.ac/institutes/grid.56061.34
63 schema:familyName Balister
64 schema:givenName P.N.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406565211.23
66 rdf:type schema:Person
67 sg:person.015374467211.17 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
68 schema:familyName Stacey
69 schema:givenName A.M.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015374467211.17
71 rdf:type schema:Person
72 sg:person.057635127.87 schema:affiliation https://www.grid.ac/institutes/grid.56061.34
73 schema:familyName Bollobás
74 schema:givenName B.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.057635127.87
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-642-56478-9_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932017
78 https://doi.org/10.1007/978-3-642-56478-9_18
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-94-015-8326-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039398143
81 https://doi.org/10.1007/978-94-015-8326-8_8
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1137/0406029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844776
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1214/aop/1176987791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403456
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
88 schema:name Department of Pure Mathematics and Statistics, Peterhouse, University of Cambridge, Cambridge CB2 1RD, England. email: A.M.Stacey@dpmms.cam.ac.uk, GB
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.56061.34 schema:alternateName University of Memphis
91 schema:name Department of Mathematics, University of Memphis, Memphis, TN 38152, USA, US
92 Department of Mathematics, University of Memphis, Memphis, TN 38152, USA. e-mail: balistep@msci.memphis.edu, US
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...