Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-05

AUTHORS

S. C. B. Raper, J. M. Gregory, T. J. Osborn

ABSTRACT

We demonstrate that a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) can emulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860–2100. A climate sensitivity of 2.6 °C is assumed, and a representation of the effect of sea-ice retreat on surface air temperature is required. In an extended experiment, with CO2 concentration held constant at twice the control run value, the HadCM2 effective climate sensitivity is found to increase from about 2.0 °C at the beginning of the integration to 3.85 °C after 900 years. The sea-level rise by this time is almost 1.0 m and the rate of rise fairly steady, implying that the final equilibrium value (the `commitment') is large. The base UD/EBM can fit the 900-year simulation of surface temperature change and thermal expansion provided that the time-dependent climate sensitivity is specified, but the vertical profile of warming in the ocean is not well reproduced. The main discrepancy is the relatively large mid-depth warming in the HadCM2 ocean, that can be emulated by (1) diagnosing depth-dependent diffusivities that increase through time; (2) diagnosing depth-dependent diffusivities for a pure-diffusion (zero upwelling) model; or (3) diagnosing higher depth-dependent diffusivities that are applied to temperature perturbations only. The latter two models can be run to equilibrium, and with a climate sensitivity of 3.85 °C, they give sea-level rise commitments of 1.7 m and 1.3 m, respectively. More... »

PAGES

601-613

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00007931

DOI

http://dx.doi.org/10.1007/pl00007931

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017112900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raper", 
        "givenName": "S. C. B.", 
        "id": "sg:person.01135047257.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, The Met Office, Bracknell, RG12 2SY, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, The Met Office, Bracknell, RG12 2SY, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregory", 
        "givenName": "J. M.", 
        "id": "sg:person.0776106250.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborn", 
        "givenName": "T. J.", 
        "id": "sg:person.01137064640.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "Abstract\u2002We demonstrate that a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) can emulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860\u20132100. A climate sensitivity of 2.6\u2009\u00b0C is assumed, and a representation of the effect of sea-ice retreat on surface air temperature is required. In an extended experiment, with CO2 concentration held constant at twice the control run value, the HadCM2 effective climate sensitivity is found to increase from about 2.0\u2009\u00b0C at the beginning of the integration to 3.85\u2009\u00b0C after 900 years. The sea-level rise by this time is almost 1.0\u2009m and the rate of rise fairly steady, implying that the final equilibrium value (the `commitment') is large. The base UD/EBM can fit the 900-year simulation of surface temperature change and thermal expansion provided that the time-dependent climate sensitivity is specified, but the vertical profile of warming in the ocean is not well reproduced. The main discrepancy is the relatively large mid-depth warming in the HadCM2 ocean, that can be emulated by (1) diagnosing depth-dependent diffusivities that increase through time; (2) diagnosing depth-dependent diffusivities for a pure-diffusion (zero upwelling) model; or (3) diagnosing higher depth-dependent diffusivities that are applied to temperature perturbations only. The latter two models can be run to equilibrium, and with a climate sensitivity of 3.85\u2009\u00b0C, they give sea-level rise commitments of 1.7\u2009m and 1.3\u2009m, respectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/pl00007931", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "energy balance climate model", 
      "depth-dependent diffusivity", 
      "sea level rise", 
      "climate sensitivity", 
      "climate models", 
      "atmosphere\u2013ocean general circulation model", 
      "surface air temperature change", 
      "effective climate sensitivity", 
      "sea ice retreat", 
      "surface air temperature", 
      "general circulation model", 
      "anthropogenic radiative forcing", 
      "surface temperature changes", 
      "air temperature changes", 
      "temperature changes", 
      "circulation model", 
      "radiative forcing", 
      "vertical profiles", 
      "air temperature", 
      "temperature perturbations", 
      "pure diffusion model", 
      "CO2 concentration", 
      "main discrepancies", 
      "Ocean", 
      "final equilibrium value", 
      "HadCM2", 
      "OGCM", 
      "forcing", 
      "retreat", 
      "warming", 
      "equilibrium value", 
      "rise", 
      "rate of rise", 
      "diffusivity", 
      "changes", 
      "model", 
      "thermal expansion", 
      "scenarios", 
      "perturbations", 
      "temperature", 
      "discrepancy", 
      "values", 
      "concentration", 
      "profile", 
      "equilibrium", 
      "beginning", 
      "simulations", 
      "time", 
      "expansion", 
      "years", 
      "sensitivity", 
      "extended experiments", 
      "rate", 
      "experiments", 
      "representation", 
      "integration", 
      "EBM", 
      "effect", 
      "use", 
      "control", 
      "commitment"
    ], 
    "name": "Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results", 
    "pagination": "601-613", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017112900"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00007931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00007931", 
      "https://app.dimensions.ai/details/publication/pub.1017112900"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_324.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/pl00007931"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00007931'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00007931'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00007931'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00007931'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      87 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00007931 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N66927416dcea47e8a85d578534e8f886
4 schema:datePublished 2001-05
5 schema:datePublishedReg 2001-05-01
6 schema:description Abstract We demonstrate that a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) can emulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860–2100. A climate sensitivity of 2.6 °C is assumed, and a representation of the effect of sea-ice retreat on surface air temperature is required. In an extended experiment, with CO2 concentration held constant at twice the control run value, the HadCM2 effective climate sensitivity is found to increase from about 2.0 °C at the beginning of the integration to 3.85 °C after 900 years. The sea-level rise by this time is almost 1.0 m and the rate of rise fairly steady, implying that the final equilibrium value (the `commitment') is large. The base UD/EBM can fit the 900-year simulation of surface temperature change and thermal expansion provided that the time-dependent climate sensitivity is specified, but the vertical profile of warming in the ocean is not well reproduced. The main discrepancy is the relatively large mid-depth warming in the HadCM2 ocean, that can be emulated by (1) diagnosing depth-dependent diffusivities that increase through time; (2) diagnosing depth-dependent diffusivities for a pure-diffusion (zero upwelling) model; or (3) diagnosing higher depth-dependent diffusivities that are applied to temperature perturbations only. The latter two models can be run to equilibrium, and with a climate sensitivity of 3.85 °C, they give sea-level rise commitments of 1.7 m and 1.3 m, respectively.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N2564850d1b834b11bbf3bd30b80452da
11 N6d884bffea594f16abcc2d33f6562bd7
12 sg:journal.1049631
13 schema:keywords CO2 concentration
14 EBM
15 HadCM2
16 OGCM
17 Ocean
18 air temperature
19 air temperature changes
20 anthropogenic radiative forcing
21 atmosphere–ocean general circulation model
22 beginning
23 changes
24 circulation model
25 climate models
26 climate sensitivity
27 commitment
28 concentration
29 control
30 depth-dependent diffusivity
31 diffusivity
32 discrepancy
33 effect
34 effective climate sensitivity
35 energy balance climate model
36 equilibrium
37 equilibrium value
38 expansion
39 experiments
40 extended experiments
41 final equilibrium value
42 forcing
43 general circulation model
44 integration
45 main discrepancies
46 model
47 perturbations
48 profile
49 pure diffusion model
50 radiative forcing
51 rate
52 rate of rise
53 representation
54 retreat
55 rise
56 scenarios
57 sea ice retreat
58 sea level rise
59 sensitivity
60 simulations
61 surface air temperature
62 surface air temperature change
63 surface temperature changes
64 temperature
65 temperature changes
66 temperature perturbations
67 thermal expansion
68 time
69 use
70 values
71 vertical profiles
72 warming
73 years
74 schema:name Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results
75 schema:pagination 601-613
76 schema:productId N638d8825541540f4bf639f38bffe7ac8
77 N7c674295144b43ae93fcf58d3b8c4076
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112900
79 https://doi.org/10.1007/pl00007931
80 schema:sdDatePublished 2022-06-01T22:01
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nb895e80c81a642cdb472b4ebba1d6257
83 schema:url https://doi.org/10.1007/pl00007931
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N2564850d1b834b11bbf3bd30b80452da schema:issueNumber 8
88 rdf:type schema:PublicationIssue
89 N638d8825541540f4bf639f38bffe7ac8 schema:name dimensions_id
90 schema:value pub.1017112900
91 rdf:type schema:PropertyValue
92 N66927416dcea47e8a85d578534e8f886 rdf:first sg:person.01135047257.42
93 rdf:rest Na328180d10654873bbf4226456427079
94 N6d884bffea594f16abcc2d33f6562bd7 schema:volumeNumber 17
95 rdf:type schema:PublicationVolume
96 N7c674295144b43ae93fcf58d3b8c4076 schema:name doi
97 schema:value 10.1007/pl00007931
98 rdf:type schema:PropertyValue
99 Na328180d10654873bbf4226456427079 rdf:first sg:person.0776106250.41
100 rdf:rest Nc7540301b944498299ab8f10946de9ea
101 Nb895e80c81a642cdb472b4ebba1d6257 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nc7540301b944498299ab8f10946de9ea rdf:first sg:person.01137064640.48
104 rdf:rest rdf:nil
105 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
106 schema:name Earth Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
109 schema:name Oceanography
110 rdf:type schema:DefinedTerm
111 sg:journal.1049631 schema:issn 0930-7575
112 1432-0894
113 schema:name Climate Dynamics
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01135047257.42 schema:affiliation grid-institutes:grid.8273.e
117 schema:familyName Raper
118 schema:givenName S. C. B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135047257.42
120 rdf:type schema:Person
121 sg:person.01137064640.48 schema:affiliation grid-institutes:grid.8273.e
122 schema:familyName Osborn
123 schema:givenName T. J.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
125 rdf:type schema:Person
126 sg:person.0776106250.41 schema:affiliation grid-institutes:grid.17100.37
127 schema:familyName Gregory
128 schema:givenName J. M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41
130 rdf:type schema:Person
131 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, The Met Office, Bracknell, RG12 2SY, UK, GB
132 schema:name Hadley Centre for Climate Prediction and Research, The Met Office, Bracknell, RG12 2SY, UK, GB
133 rdf:type schema:Organization
134 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB
135 schema:name Climatic Research Unit, University of East Anglia, Norwich, NR4 7TJ, UK, GB
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...