Approximation of boundary element matrices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Mario Bebendorf

ABSTRACT

This article considers the problem of approximating a general asymptotically smooth function in two variables, typically arising in integral formulations of boundary value problems, by a sum of products of two functions in one variable. From these results an iterative algorithm for the low-rank approximation of blocks of large unstructured matrices generated by asymptotically smooth functions is developed. This algorithm uses only few entries from the original block and since it has a natural stopping criterion the approximative rank is not needed in advance. More... »

PAGES

565-589

Journal

TITLE

Numerische Mathematik

ISSUE

4

VOLUME

86

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00005410

DOI

http://dx.doi.org/10.1007/pl00005410

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008917304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saarland University", 
          "id": "https://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "Saarland Universit\u00e4t, Fachbereich Mathematik, Postfach 151150, 66041 Saarbr\u00fccken, Germany; e-mail: bebendorf@num.uni-sb.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bebendorf", 
        "givenName": "Mario", 
        "id": "sg:person.01076626525.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076626525.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "This article considers the problem of approximating a general asymptotically smooth function in two variables, typically arising in integral formulations of boundary value problems, by a sum of products of two functions in one variable. From these results an iterative algorithm for the low-rank approximation of blocks of large unstructured matrices generated by asymptotically smooth functions is developed. This algorithm uses only few entries from the original block and since it has a natural stopping criterion the approximative rank is not needed in advance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00005410", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Approximation of boundary element matrices", 
    "pagination": "565-589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a7bb9b236b68341bdfaa86e8658fcd81c16ec0e8ac93feb828952843c914946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00005410"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008917304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00005410", 
      "https://app.dimensions.ai/details/publication/pub.1008917304"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/PL00005410"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00005410'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00005410'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00005410'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00005410'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00005410 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4b6821b3341245e484346251725bc9bd
4 schema:datePublished 2000-10
5 schema:datePublishedReg 2000-10-01
6 schema:description This article considers the problem of approximating a general asymptotically smooth function in two variables, typically arising in integral formulations of boundary value problems, by a sum of products of two functions in one variable. From these results an iterative algorithm for the low-rank approximation of blocks of large unstructured matrices generated by asymptotically smooth functions is developed. This algorithm uses only few entries from the original block and since it has a natural stopping criterion the approximative rank is not needed in advance.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N46170cd0ccce46349d297e4cc5b305c4
11 Nfcb9864696fc4cc78d617565704e3206
12 sg:journal.1136759
13 schema:name Approximation of boundary element matrices
14 schema:pagination 565-589
15 schema:productId N5cb2115b1eab4e74ac1c59eb294c2008
16 N7b539ea1f9424796b76da1b7560ac246
17 Ncb62f1542ec343be8cf69484ca1f3e3d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008917304
19 https://doi.org/10.1007/pl00005410
20 schema:sdDatePublished 2019-04-10T18:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N2ecec84ac818455991faf9411b7af13a
23 schema:url http://link.springer.com/10.1007/PL00005410
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N2ecec84ac818455991faf9411b7af13a schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N46170cd0ccce46349d297e4cc5b305c4 schema:volumeNumber 86
30 rdf:type schema:PublicationVolume
31 N4b6821b3341245e484346251725bc9bd rdf:first sg:person.01076626525.35
32 rdf:rest rdf:nil
33 N5cb2115b1eab4e74ac1c59eb294c2008 schema:name dimensions_id
34 schema:value pub.1008917304
35 rdf:type schema:PropertyValue
36 N7b539ea1f9424796b76da1b7560ac246 schema:name doi
37 schema:value 10.1007/pl00005410
38 rdf:type schema:PropertyValue
39 Ncb62f1542ec343be8cf69484ca1f3e3d schema:name readcube_id
40 schema:value 2a7bb9b236b68341bdfaa86e8658fcd81c16ec0e8ac93feb828952843c914946
41 rdf:type schema:PropertyValue
42 Nfcb9864696fc4cc78d617565704e3206 schema:issueNumber 4
43 rdf:type schema:PublicationIssue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136759 schema:issn 0029-599X
51 0945-3245
52 schema:name Numerische Mathematik
53 rdf:type schema:Periodical
54 sg:person.01076626525.35 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
55 schema:familyName Bebendorf
56 schema:givenName Mario
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076626525.35
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.11749.3a schema:alternateName Saarland University
60 schema:name Saarland Universität, Fachbereich Mathematik, Postfach 151150, 66041 Saarbrücken, Germany; e-mail: bebendorf@num.uni-sb.de, DE
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...