Discrete boundary element methods on general meshes in 3D View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-07

AUTHORS

I.G. Graham, W. Hackbusch, S.A. Sauter

ABSTRACT

Abstract. This paper is concerned with the stability and convergence of fully discrete Galerkin methods for boundary integral equations on bounded piecewise smooth surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^3$\end{document}. Our theory covers equations with very general operators, provided the associated weak form is bounded and elliptic on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^\mu$\end{document}, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu \in [-1,1]$\end{document}. In contrast to other studies on this topic, we do not assume our meshes to be quasiuniform, and therefore the analysis admits locally refined meshes. To achieve such generality, standard inverse estimates for the quasiuniform case are replaced by appropriate generalised estimates which hold even in the locally refined case. Since the approximation of singular integrals on or near the diagonal of the Galerkin matrix has been well-analysed previously, this paper deals only with errors in the integration of the nearly singular and smooth Galerkin integrals which comprise the dominant part of the matrix. Our results show how accurate the quadrature rules must be in order that the resulting discrete Galerkin method enjoys the same stability properties and convergence rates as the true Galerkin method. Although this study considers only continuous piecewise linear basis functions on triangles, our approach is not restricted in principle to this case. As an example, the theory is applied here to conventional “triangle-based” quadrature rules which are commonly used in practice. A subsequent paper [14] introduces a new and much more efficient “node-based” approach and analyses it using the results of the present paper. More... »

PAGES

103-137

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00005399

DOI

http://dx.doi.org/10.1007/pl00005399

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007699012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bath", 
          "id": "https://www.grid.ac/institutes/grid.7340.0", 
          "name": [
            "Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK; e-mail: igg@maths.bath.ac.uk, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graham", 
        "givenName": "I.G.", 
        "id": "sg:person.011330110671.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330110671.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Mathematics in the Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419532.8", 
          "name": [
            "Max-Planck-Institut f\u00fcr Mathematik in den Naturwissenschaften, 04103 Leipzig, Germany; e-mail: wh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackbusch", 
        "givenName": "W.", 
        "id": "sg:person.016444014103.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Institut f\u00fcr Mathematik, Universit\u00e4t Z\u00fcrich, Winterthurerstrasse 190, 8057 Z\u00fcrich, Switzerland; e-mail: stas@amath.unizh.ch, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauter", 
        "givenName": "S.A.", 
        "id": "sg:person.01026513657.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026513657.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-663-10372-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001219204", 
          "https://doi.org/10.1007/978-3-663-10372-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-663-10372-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001219204", 
          "https://doi.org/10.1007/978-3-663-10372-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-60791-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009442412", 
          "https://doi.org/10.1007/978-3-642-60791-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-60791-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009442412", 
          "https://doi.org/10.1007/978-3-642-60791-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022414848", 
          "https://doi.org/10.1007/bf01396234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030739071", 
          "https://doi.org/10.1007/bf01601710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030739071", 
          "https://doi.org/10.1007/bf01601710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(85)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032552752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(97)00236-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041583239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19921560113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047579075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0519043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857738"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-07", 
    "datePublishedReg": "2000-07-01", 
    "description": " Abstract. This paper is concerned with the stability and convergence of fully discrete Galerkin methods for boundary integral equations on bounded piecewise smooth surfaces in \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\mathbb{R}^3$\\end{document}. Our theory covers equations with very general operators, provided the associated weak form is bounded and elliptic on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $H^\\mu$\\end{document}, for some \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\mu \\in [-1,1]$\\end{document}. In contrast to other studies on this topic, we do not assume our meshes to be quasiuniform, and therefore the analysis admits locally refined meshes. To achieve such generality, standard inverse estimates for the quasiuniform case are replaced by appropriate generalised estimates which hold even in the locally refined case. Since the approximation of singular integrals on or near the diagonal of the Galerkin matrix has been well-analysed previously, this paper deals only with errors in the integration of the nearly singular and smooth Galerkin integrals which comprise the dominant part of the matrix. Our results show how accurate the quadrature rules must be in order that the resulting discrete Galerkin method enjoys the same stability properties and convergence rates as the true Galerkin method. Although this study considers only continuous piecewise linear basis functions on triangles, our approach is not restricted in principle to this case. As an example, the theory is applied here to conventional \u201ctriangle-based\u201d quadrature rules which are commonly used in practice. A subsequent paper [14] introduces a new and much more efficient \u201cnode-based\u201d approach and analyses it using the results of the present paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00005399", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Discrete boundary element methods on general meshes in 3D", 
    "pagination": "103-137", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24ac09348e99d455dcf157b40a94379d4a31bf76dd7fa2ef147bd64d8b97f426"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00005399"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007699012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00005399", 
      "https://app.dimensions.ai/details/publication/pub.1007699012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/PL00005399"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00005399'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00005399'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00005399'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00005399'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00005399 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbfb39c0251164447a9b85711f806b081
4 schema:citation sg:pub.10.1007/978-1-4612-4288-8
5 sg:pub.10.1007/978-3-642-60791-2_4
6 sg:pub.10.1007/978-3-663-10372-1
7 sg:pub.10.1007/bf01396234
8 sg:pub.10.1007/bf01601710
9 https://doi.org/10.1002/mana.19921560113
10 https://doi.org/10.1016/0021-9991(85)90002-6
11 https://doi.org/10.1016/s0045-7825(97)00236-3
12 https://doi.org/10.1137/0519043
13 https://doi.org/10.1137/0916040
14 schema:datePublished 2000-07
15 schema:datePublishedReg 2000-07-01
16 schema:description Abstract. This paper is concerned with the stability and convergence of fully discrete Galerkin methods for boundary integral equations on bounded piecewise smooth surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^3$\end{document}. Our theory covers equations with very general operators, provided the associated weak form is bounded and elliptic on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^\mu$\end{document}, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu \in [-1,1]$\end{document}. In contrast to other studies on this topic, we do not assume our meshes to be quasiuniform, and therefore the analysis admits locally refined meshes. To achieve such generality, standard inverse estimates for the quasiuniform case are replaced by appropriate generalised estimates which hold even in the locally refined case. Since the approximation of singular integrals on or near the diagonal of the Galerkin matrix has been well-analysed previously, this paper deals only with errors in the integration of the nearly singular and smooth Galerkin integrals which comprise the dominant part of the matrix. Our results show how accurate the quadrature rules must be in order that the resulting discrete Galerkin method enjoys the same stability properties and convergence rates as the true Galerkin method. Although this study considers only continuous piecewise linear basis functions on triangles, our approach is not restricted in principle to this case. As an example, the theory is applied here to conventional “triangle-based” quadrature rules which are commonly used in practice. A subsequent paper [14] introduces a new and much more efficient “node-based” approach and analyses it using the results of the present paper.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf Nd4b2f225b5af43aaab0b7aa1763d9af6
21 Ne6293de147634bb9b36f8d7b9a755fda
22 sg:journal.1136759
23 schema:name Discrete boundary element methods on general meshes in 3D
24 schema:pagination 103-137
25 schema:productId N0d26bc2ad8034c3da59d788399137201
26 N245308c1ac4f4bccb86cb770fd4e47f0
27 Nccf91118da3e4418a75036f4f4808f5a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007699012
29 https://doi.org/10.1007/pl00005399
30 schema:sdDatePublished 2019-04-10T15:45
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb8cb2fe867e54a91b03da3f526f95668
33 schema:url http://link.springer.com/10.1007/PL00005399
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0d26bc2ad8034c3da59d788399137201 schema:name readcube_id
38 schema:value 24ac09348e99d455dcf157b40a94379d4a31bf76dd7fa2ef147bd64d8b97f426
39 rdf:type schema:PropertyValue
40 N245308c1ac4f4bccb86cb770fd4e47f0 schema:name dimensions_id
41 schema:value pub.1007699012
42 rdf:type schema:PropertyValue
43 N3b5fc36e67814ca085aa689192d971e7 rdf:first sg:person.01026513657.59
44 rdf:rest rdf:nil
45 N73803a0c843e43549b074bd10ec42ab2 rdf:first sg:person.016444014103.75
46 rdf:rest N3b5fc36e67814ca085aa689192d971e7
47 Nb8cb2fe867e54a91b03da3f526f95668 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nbfb39c0251164447a9b85711f806b081 rdf:first sg:person.011330110671.25
50 rdf:rest N73803a0c843e43549b074bd10ec42ab2
51 Nccf91118da3e4418a75036f4f4808f5a schema:name doi
52 schema:value 10.1007/pl00005399
53 rdf:type schema:PropertyValue
54 Nd4b2f225b5af43aaab0b7aa1763d9af6 schema:volumeNumber 86
55 rdf:type schema:PublicationVolume
56 Ne6293de147634bb9b36f8d7b9a755fda schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136759 schema:issn 0029-599X
65 0945-3245
66 schema:name Numerische Mathematik
67 rdf:type schema:Periodical
68 sg:person.01026513657.59 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
69 schema:familyName Sauter
70 schema:givenName S.A.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026513657.59
72 rdf:type schema:Person
73 sg:person.011330110671.25 schema:affiliation https://www.grid.ac/institutes/grid.7340.0
74 schema:familyName Graham
75 schema:givenName I.G.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330110671.25
77 rdf:type schema:Person
78 sg:person.016444014103.75 schema:affiliation https://www.grid.ac/institutes/grid.419532.8
79 schema:familyName Hackbusch
80 schema:givenName W.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75
82 rdf:type schema:Person
83 sg:pub.10.1007/978-1-4612-4288-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014836955
84 https://doi.org/10.1007/978-1-4612-4288-8
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-3-642-60791-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009442412
87 https://doi.org/10.1007/978-3-642-60791-2_4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-663-10372-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001219204
90 https://doi.org/10.1007/978-3-663-10372-1
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01396234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022414848
93 https://doi.org/10.1007/bf01396234
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01601710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739071
96 https://doi.org/10.1007/bf01601710
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/mana.19921560113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047579075
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0021-9991(85)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032552752
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0045-7825(97)00236-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583239
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/0519043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848041
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1137/0916040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857738
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.419532.8 schema:alternateName Max Planck Institute for Mathematics in the Sciences
109 schema:name Max-Planck-Institut für Mathematik in den Naturwissenschaften, 04103 Leipzig, Germany; e-mail: wh@mis.mpg.de, DE
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.7340.0 schema:alternateName University of Bath
112 schema:name Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK; e-mail: igg@maths.bath.ac.uk, GB
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.7400.3 schema:alternateName University of Zurich
115 schema:name Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; e-mail: stas@amath.unizh.ch, CH
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...