Combinatorial vector fields and dynamical systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-08

AUTHORS

Robin Forman

ABSTRACT

In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere. More... »

PAGES

629-681

Journal

TITLE

Mathematische Zeitschrift

ISSUE

4

VOLUME

228

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00004638

DOI

http://dx.doi.org/10.1007/pl00004638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027904863


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forman", 
        "givenName": "Robin", 
        "id": "sg:person.0657550244.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-08", 
    "datePublishedReg": "1998-08-01", 
    "description": "In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $z=0$\\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00004638", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "228"
      }
    ], 
    "name": "Combinatorial vector fields and dynamical systems", 
    "pagination": "629-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00004638"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027904863"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00004638", 
      "https://app.dimensions.ai/details/publication/pub.1027904863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FPL00004638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00004638 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N42c1423c23984773ab4bac0b4bdbe635
4 schema:datePublished 1998-08
5 schema:datePublishedReg 1998-08-01
6 schema:description In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N98460048ae0c4376bcaf0cb5707d95a0
11 N9c72fa77a00445598973f9d4aab6635e
12 sg:journal.1136443
13 schema:name Combinatorial vector fields and dynamical systems
14 schema:pagination 629-681
15 schema:productId N0521776a05704b97adc96a57a7be615e
16 N97245fe0546c42d2b3d7e54ae7dbebbb
17 Nef494da03b0c4282a387252c0f2b9dcf
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027904863
19 https://doi.org/10.1007/pl00004638
20 schema:sdDatePublished 2019-04-10T23:28
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N6abea6fbbcf34fc59bf28e732ae41f82
23 schema:url http://link.springer.com/10.1007%2FPL00004638
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0521776a05704b97adc96a57a7be615e schema:name readcube_id
28 schema:value 84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21
29 rdf:type schema:PropertyValue
30 N42c1423c23984773ab4bac0b4bdbe635 rdf:first sg:person.0657550244.30
31 rdf:rest rdf:nil
32 N6abea6fbbcf34fc59bf28e732ae41f82 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N97245fe0546c42d2b3d7e54ae7dbebbb schema:name dimensions_id
35 schema:value pub.1027904863
36 rdf:type schema:PropertyValue
37 N98460048ae0c4376bcaf0cb5707d95a0 schema:issueNumber 4
38 rdf:type schema:PublicationIssue
39 N9c72fa77a00445598973f9d4aab6635e schema:volumeNumber 228
40 rdf:type schema:PublicationVolume
41 Nef494da03b0c4282a387252c0f2b9dcf schema:name doi
42 schema:value 10.1007/pl00004638
43 rdf:type schema:PropertyValue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136443 schema:issn 0025-5874
51 1432-1823
52 schema:name Mathematische Zeitschrift
53 rdf:type schema:Periodical
54 sg:person.0657550244.30 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
55 schema:familyName Forman
56 schema:givenName Robin
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
60 schema:name Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...