Ontology type: schema:ScholarlyArticle
1998-08
AUTHORS ABSTRACTIn this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere. More... »
PAGES629-681
http://scigraph.springernature.com/pub.10.1007/pl00004638
DOIhttp://dx.doi.org/10.1007/pl00004638
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027904863
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Rice University",
"id": "https://www.grid.ac/institutes/grid.21940.3e",
"name": [
"Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US"
],
"type": "Organization"
},
"familyName": "Forman",
"givenName": "Robin",
"id": "sg:person.0657550244.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30"
],
"type": "Person"
}
],
"datePublished": "1998-08",
"datePublishedReg": "1998-08-01",
"description": "In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $z=0$\\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere.",
"genre": "research_article",
"id": "sg:pub.10.1007/pl00004638",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136443",
"issn": [
"0025-5874",
"1432-1823"
],
"name": "Mathematische Zeitschrift",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "228"
}
],
"name": "Combinatorial vector fields and dynamical systems",
"pagination": "629-681",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/pl00004638"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027904863"
]
}
],
"sameAs": [
"https://doi.org/10.1007/pl00004638",
"https://app.dimensions.ai/details/publication/pub.1027904863"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T23:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2FPL00004638"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'
This table displays all metadata directly associated to this object as RDF triples.
61 TRIPLES
20 PREDICATES
27 URIs
19 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/pl00004638 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N42c1423c23984773ab4bac0b4bdbe635 |
4 | ″ | schema:datePublished | 1998-08 |
5 | ″ | schema:datePublishedReg | 1998-08-01 |
6 | ″ | schema:description | In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere. |
7 | ″ | schema:genre | research_article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N98460048ae0c4376bcaf0cb5707d95a0 |
11 | ″ | ″ | N9c72fa77a00445598973f9d4aab6635e |
12 | ″ | ″ | sg:journal.1136443 |
13 | ″ | schema:name | Combinatorial vector fields and dynamical systems |
14 | ″ | schema:pagination | 629-681 |
15 | ″ | schema:productId | N0521776a05704b97adc96a57a7be615e |
16 | ″ | ″ | N97245fe0546c42d2b3d7e54ae7dbebbb |
17 | ″ | ″ | Nef494da03b0c4282a387252c0f2b9dcf |
18 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027904863 |
19 | ″ | ″ | https://doi.org/10.1007/pl00004638 |
20 | ″ | schema:sdDatePublished | 2019-04-10T23:28 |
21 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
22 | ″ | schema:sdPublisher | N6abea6fbbcf34fc59bf28e732ae41f82 |
23 | ″ | schema:url | http://link.springer.com/10.1007%2FPL00004638 |
24 | ″ | sgo:license | sg:explorer/license/ |
25 | ″ | sgo:sdDataset | articles |
26 | ″ | rdf:type | schema:ScholarlyArticle |
27 | N0521776a05704b97adc96a57a7be615e | schema:name | readcube_id |
28 | ″ | schema:value | 84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21 |
29 | ″ | rdf:type | schema:PropertyValue |
30 | N42c1423c23984773ab4bac0b4bdbe635 | rdf:first | sg:person.0657550244.30 |
31 | ″ | rdf:rest | rdf:nil |
32 | N6abea6fbbcf34fc59bf28e732ae41f82 | schema:name | Springer Nature - SN SciGraph project |
33 | ″ | rdf:type | schema:Organization |
34 | N97245fe0546c42d2b3d7e54ae7dbebbb | schema:name | dimensions_id |
35 | ″ | schema:value | pub.1027904863 |
36 | ″ | rdf:type | schema:PropertyValue |
37 | N98460048ae0c4376bcaf0cb5707d95a0 | schema:issueNumber | 4 |
38 | ″ | rdf:type | schema:PublicationIssue |
39 | N9c72fa77a00445598973f9d4aab6635e | schema:volumeNumber | 228 |
40 | ″ | rdf:type | schema:PublicationVolume |
41 | Nef494da03b0c4282a387252c0f2b9dcf | schema:name | doi |
42 | ″ | schema:value | 10.1007/pl00004638 |
43 | ″ | rdf:type | schema:PropertyValue |
44 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
45 | ″ | schema:name | Mathematical Sciences |
46 | ″ | rdf:type | schema:DefinedTerm |
47 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
48 | ″ | schema:name | Pure Mathematics |
49 | ″ | rdf:type | schema:DefinedTerm |
50 | sg:journal.1136443 | schema:issn | 0025-5874 |
51 | ″ | ″ | 1432-1823 |
52 | ″ | schema:name | Mathematische Zeitschrift |
53 | ″ | rdf:type | schema:Periodical |
54 | sg:person.0657550244.30 | schema:affiliation | https://www.grid.ac/institutes/grid.21940.3e |
55 | ″ | schema:familyName | Forman |
56 | ″ | schema:givenName | Robin |
57 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30 |
58 | ″ | rdf:type | schema:Person |
59 | https://www.grid.ac/institutes/grid.21940.3e | schema:alternateName | Rice University |
60 | ″ | schema:name | Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US |
61 | ″ | rdf:type | schema:Organization |