Combinatorial vector fields and dynamical systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-08

AUTHORS

Robin Forman

ABSTRACT

In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere. More... »

PAGES

629-681

Journal

TITLE

Mathematische Zeitschrift

ISSUE

4

VOLUME

228

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00004638

DOI

http://dx.doi.org/10.1007/pl00004638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027904863


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forman", 
        "givenName": "Robin", 
        "id": "sg:person.0657550244.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-08", 
    "datePublishedReg": "1998-08-01", 
    "description": "In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $z=0$\\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00004638", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "228"
      }
    ], 
    "name": "Combinatorial vector fields and dynamical systems", 
    "pagination": "629-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00004638"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027904863"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00004638", 
      "https://app.dimensions.ai/details/publication/pub.1027904863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FPL00004638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00004638'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00004638 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N84acb9343bed40cb84ba328c8c05dfe3
4 schema:datePublished 1998-08
5 schema:datePublishedReg 1998-08-01
6 schema:description In this paper we introduce the notion of a combinatorial dynamical system on any CW complex. Earlier in [Fo3] and [Fo4], we presented the idea of a combinatorial vector field (see also [Fo1] for the one-dimensional case), and studied the corresponding Morse Theory. Equivalently, we studied the homological properties of gradient vector fields (these terms were defined precisely in [Fo3], see also Sect. 2 of this paper). In this paper we broaden our investigation and consider general combinatorial vector fields. We first study the homological properties of such vector fields, generalizing the Morse Inequalities of [Fo3]. We then introduce various zeta functions which keep track of the closed orbits of the corresponding flow, and prove that these zeta functions, initially defined only on a half plane, can be analytically continued to meromorphic functions on the entire complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex (introduced in [Re], [Fr]) and show that the torsion is equal to the value at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $z=0$\end{document} of one of the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial analogue of the work on smooth dynamical systems presented in [P-P], [Fra], [Fri1, 2] and elsewhere.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N46c7e72b541c4ca399dc6c2b8c5d93b4
11 Nd47c8a490bd6409fb971149d01d07f86
12 sg:journal.1136443
13 schema:name Combinatorial vector fields and dynamical systems
14 schema:pagination 629-681
15 schema:productId N30652b26b40c49ebaed15d47638e0d33
16 N379e4f772ca24ee2add2d78172364ec4
17 N7dd36ef38c8c4c069a40ca7720e39816
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027904863
19 https://doi.org/10.1007/pl00004638
20 schema:sdDatePublished 2019-04-10T23:28
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N26f0b26ed86741c4bf3e4c14dd9dcc31
23 schema:url http://link.springer.com/10.1007%2FPL00004638
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N26f0b26ed86741c4bf3e4c14dd9dcc31 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N30652b26b40c49ebaed15d47638e0d33 schema:name doi
30 schema:value 10.1007/pl00004638
31 rdf:type schema:PropertyValue
32 N379e4f772ca24ee2add2d78172364ec4 schema:name readcube_id
33 schema:value 84edebdb7b03363fd343f860ecd4e121669454b7d335b361f1475c3813013e21
34 rdf:type schema:PropertyValue
35 N46c7e72b541c4ca399dc6c2b8c5d93b4 schema:volumeNumber 228
36 rdf:type schema:PublicationVolume
37 N7dd36ef38c8c4c069a40ca7720e39816 schema:name dimensions_id
38 schema:value pub.1027904863
39 rdf:type schema:PropertyValue
40 N84acb9343bed40cb84ba328c8c05dfe3 rdf:first sg:person.0657550244.30
41 rdf:rest rdf:nil
42 Nd47c8a490bd6409fb971149d01d07f86 schema:issueNumber 4
43 rdf:type schema:PublicationIssue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136443 schema:issn 0025-5874
51 1432-1823
52 schema:name Mathematische Zeitschrift
53 rdf:type schema:Periodical
54 sg:person.0657550244.30 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
55 schema:familyName Forman
56 schema:givenName Robin
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657550244.30
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
60 schema:name Department of Mathematics, Rice University, Houston, TX 77251, USA (e-mail: forman@math.rice.edu), US
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...