The microfracture technique to treat full thickness articular cartilage defects of the knee View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01-01

AUTHORS

J. R. Steadman, W. G. Rodkey, K. K. Briggs, J. J. Rodrigo

ABSTRACT

Full thickness defects of the articular cartilage rarely heal spontaneously. While some patients do not develop clinically significant problems from chondral defects, most eventually develop degenerative changes associated with the cartilage damage over time. Techniques to treat chondral defects include abrasion, drilling, tissue autografts, allografts, and cell transplantation. The senior author has developed a procedure referred to as the “microfracture”. This technique enhances chondral resurfacing by providing a suitable environment for tissue regeneration and by taking advantage of the body's own healing potential. This technique has now been used in more than 1400 patients. Specially designed awls are used to make multiple perforations, or “microfractures”, into the subchondral bone plate. The perforations are made as close together as necessary, but not so close that one breaks into another. Consequently, the microfracture holes are approximately three to four millimeters apart (or 3 to 4 holes per square centimeter). Importantly, the integrity of the subchondral bone plate is maintained. The released marrow elements form a “super clot” which provides an enriched environment for tissue regeneration. Follow up with long term results of more than 8 years have been positive and very encouraging. More... »

PAGES

26-32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00003545

DOI

http://dx.doi.org/10.1007/pl00003545

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051901280

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10081041


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Regeneration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cartilage, Articular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knee Injuries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsurgery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Orthopedic Procedures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orthopaedic Surgeon and Principal, Steadman Hawkins Clinic and Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Orthopaedic Surgeon and Principal, Steadman Hawkins Clinic and Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steadman", 
        "givenName": "J. R.", 
        "id": "sg:person.0771633230.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771633230.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Basic Science Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Basic Science Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodkey", 
        "givenName": "W. G.", 
        "id": "sg:person.01227151621.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227151621.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA", 
          "id": "http://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Clinical Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Briggs", 
        "givenName": "K. K.", 
        "id": "sg:person.01166617626.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166617626.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, University of California at Davis Medical Center, Sacramento, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.413079.8", 
          "name": [
            "Department of Orthopaedic Surgery, University of California at Davis Medical Center, Sacramento, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigo", 
        "givenName": "J. J.", 
        "id": "sg:person.01151673300.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151673300.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-01-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "Full thickness defects of the articular cartilage rarely heal spontaneously. While some patients do not develop clinically significant problems from chondral defects, most eventually develop degenerative changes associated with the cartilage damage over time. Techniques to treat chondral defects include abrasion, drilling, tissue autografts, allografts, and cell transplantation. The senior author has developed a procedure referred to as the \u201cmicrofracture\u201d. This technique enhances chondral resurfacing by providing a suitable environment for tissue regeneration and by taking advantage of the body's own healing potential. This technique has now been used in more than 1400 patients. Specially designed awls are used to make multiple perforations, or \u201cmicrofractures\u201d, into the subchondral bone plate. The perforations are made as close together as necessary, but not so close that one breaks into another. Consequently, the microfracture holes are approximately three to four millimeters apart (or 3 to 4 holes per square centimeter). Importantly, the integrity of the subchondral bone plate is maintained. The released marrow elements form a \u201csuper clot\u201d which provides an enriched environment for tissue regeneration. Follow up with long term results of more than 8 years have been positive and very encouraging.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/pl00003545", 
    "inLanguage": "de", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1015543", 
        "issn": [
          "0085-4530", 
          "1433-0431"
        ], 
        "name": "Der Orthop\u00e4de", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "tissue regeneration", 
      "bone plate", 
      "subchondral bone plate", 
      "plate", 
      "articular cartilage defects", 
      "thickness defects", 
      "microfracture", 
      "body's own healing potential", 
      "abrasion", 
      "drilling", 
      "technique", 
      "articular cartilage", 
      "cartilage defects", 
      "full thickness defects", 
      "defects", 
      "full thickness articular cartilage defects", 
      "chondral defects", 
      "tissue autografts", 
      "suitable environment", 
      "millimeters", 
      "holes", 
      "regeneration", 
      "environment", 
      "advantages", 
      "healing potential", 
      "elements", 
      "microfracture technique", 
      "significant problem", 
      "integrity", 
      "damage", 
      "results", 
      "problem", 
      "potential", 
      "time", 
      "procedure", 
      "cartilage", 
      "cartilage damage", 
      "multiple perforations", 
      "microfracture holes", 
      "changes", 
      "autograft", 
      "awl", 
      "perforation", 
      "authors", 
      "knee", 
      "years", 
      "allografts", 
      "clots", 
      "senior author", 
      "marrow elements", 
      "long term results", 
      "degenerative changes", 
      "term results", 
      "cell transplantation", 
      "enriched environment", 
      "patients", 
      "transplantation", 
      "'s own healing potential", 
      "super clot", 
      "thickness articular cartilage defects"
    ], 
    "name": "The microfracture technique to treat full thickness articular cartilage defects of the knee", 
    "pagination": "26-32", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051901280"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00003545"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10081041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00003545", 
      "https://app.dimensions.ai/details/publication/pub.1051901280"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_316.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/pl00003545"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00003545'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00003545'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00003545'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00003545'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      94 URIs      86 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00003545 schema:about N1d354e8dd2d746d5855ad1e27f448d89
2 N297c6fef95764dc2951b9d427f25c533
3 N62554c57cd9c45559b0cc61af17ebc8d
4 N692e9f71608748339bd7a68c00069583
5 Nb8436f5e490f4346ac22d168a1671f29
6 Nc762a2c9143c47cbb15a06dd32be135f
7 Ne4704f61a6d3475bb7e31f321331d6da
8 Nee5a2989c0ad401cb77d624311d5bcc3
9 anzsrc-for:09
10 anzsrc-for:0903
11 schema:author Nfb788221d0b246cb98a1b49005eb9891
12 schema:datePublished 1999-01-01
13 schema:datePublishedReg 1999-01-01
14 schema:description Full thickness defects of the articular cartilage rarely heal spontaneously. While some patients do not develop clinically significant problems from chondral defects, most eventually develop degenerative changes associated with the cartilage damage over time. Techniques to treat chondral defects include abrasion, drilling, tissue autografts, allografts, and cell transplantation. The senior author has developed a procedure referred to as the “microfracture”. This technique enhances chondral resurfacing by providing a suitable environment for tissue regeneration and by taking advantage of the body's own healing potential. This technique has now been used in more than 1400 patients. Specially designed awls are used to make multiple perforations, or “microfractures”, into the subchondral bone plate. The perforations are made as close together as necessary, but not so close that one breaks into another. Consequently, the microfracture holes are approximately three to four millimeters apart (or 3 to 4 holes per square centimeter). Importantly, the integrity of the subchondral bone plate is maintained. The released marrow elements form a “super clot” which provides an enriched environment for tissue regeneration. Follow up with long term results of more than 8 years have been positive and very encouraging.
15 schema:genre article
16 schema:inLanguage de
17 schema:isAccessibleForFree false
18 schema:isPartOf N19fecdeb257547a1a0b2ff4a457f8a30
19 N30d395edc96f46629132e44dccae4f16
20 sg:journal.1015543
21 schema:keywords 's own healing potential
22 abrasion
23 advantages
24 allografts
25 articular cartilage
26 articular cartilage defects
27 authors
28 autograft
29 awl
30 body's own healing potential
31 bone plate
32 cartilage
33 cartilage damage
34 cartilage defects
35 cell transplantation
36 changes
37 chondral defects
38 clots
39 damage
40 defects
41 degenerative changes
42 drilling
43 elements
44 enriched environment
45 environment
46 full thickness articular cartilage defects
47 full thickness defects
48 healing potential
49 holes
50 integrity
51 knee
52 long term results
53 marrow elements
54 microfracture
55 microfracture holes
56 microfracture technique
57 millimeters
58 multiple perforations
59 patients
60 perforation
61 plate
62 potential
63 problem
64 procedure
65 regeneration
66 results
67 senior author
68 significant problem
69 subchondral bone plate
70 suitable environment
71 super clot
72 technique
73 term results
74 thickness articular cartilage defects
75 thickness defects
76 time
77 tissue autografts
78 tissue regeneration
79 transplantation
80 years
81 schema:name The microfracture technique to treat full thickness articular cartilage defects of the knee
82 schema:pagination 26-32
83 schema:productId N88da3992e53e4399985b93e7d311af55
84 Nf3e062460ae647c09b1272ccf82c48dc
85 Nfb0deab914c448dfb19fdf2cbda84ebd
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051901280
87 https://doi.org/10.1007/pl00003545
88 schema:sdDatePublished 2021-11-01T18:02
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nb6e4043580974b81909d1e1c4690181d
91 schema:url https://doi.org/10.1007/pl00003545
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N19fecdeb257547a1a0b2ff4a457f8a30 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N1d354e8dd2d746d5855ad1e27f448d89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Treatment Outcome
99 rdf:type schema:DefinedTerm
100 N297c6fef95764dc2951b9d427f25c533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Knee Injuries
102 rdf:type schema:DefinedTerm
103 N30d395edc96f46629132e44dccae4f16 schema:volumeNumber 28
104 rdf:type schema:PublicationVolume
105 N5c2021cebfaf4f1495a8569e729f4551 rdf:first sg:person.01227151621.25
106 rdf:rest N97488228d3344fbc8a0e4687388141af
107 N62554c57cd9c45559b0cc61af17ebc8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Bone Regeneration
109 rdf:type schema:DefinedTerm
110 N692e9f71608748339bd7a68c00069583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 N88da3992e53e4399985b93e7d311af55 schema:name dimensions_id
114 schema:value pub.1051901280
115 rdf:type schema:PropertyValue
116 N97488228d3344fbc8a0e4687388141af rdf:first sg:person.01166617626.14
117 rdf:rest Ndafe2d7ec541422d824d875e1974b657
118 Nb6e4043580974b81909d1e1c4690181d schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nb8436f5e490f4346ac22d168a1671f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Cartilage, Articular
122 rdf:type schema:DefinedTerm
123 Nc762a2c9143c47cbb15a06dd32be135f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Microsurgery
125 rdf:type schema:DefinedTerm
126 Ndafe2d7ec541422d824d875e1974b657 rdf:first sg:person.01151673300.19
127 rdf:rest rdf:nil
128 Ne4704f61a6d3475bb7e31f321331d6da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Follow-Up Studies
130 rdf:type schema:DefinedTerm
131 Nee5a2989c0ad401cb77d624311d5bcc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Orthopedic Procedures
133 rdf:type schema:DefinedTerm
134 Nf3e062460ae647c09b1272ccf82c48dc schema:name pubmed_id
135 schema:value 10081041
136 rdf:type schema:PropertyValue
137 Nfb0deab914c448dfb19fdf2cbda84ebd schema:name doi
138 schema:value 10.1007/pl00003545
139 rdf:type schema:PropertyValue
140 Nfb788221d0b246cb98a1b49005eb9891 rdf:first sg:person.0771633230.42
141 rdf:rest N5c2021cebfaf4f1495a8569e729f4551
142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
143 schema:name Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biomedical Engineering
147 rdf:type schema:DefinedTerm
148 sg:journal.1015543 schema:issn 0085-4530
149 1433-0431
150 schema:name Der Orthopäde
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01151673300.19 schema:affiliation grid-institutes:grid.413079.8
154 schema:familyName Rodrigo
155 schema:givenName J. J.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151673300.19
157 rdf:type schema:Person
158 sg:person.01166617626.14 schema:affiliation grid-institutes:grid.419649.7
159 schema:familyName Briggs
160 schema:givenName K. K.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166617626.14
162 rdf:type schema:Person
163 sg:person.01227151621.25 schema:affiliation grid-institutes:grid.419649.7
164 schema:familyName Rodkey
165 schema:givenName W. G.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227151621.25
167 rdf:type schema:Person
168 sg:person.0771633230.42 schema:affiliation grid-institutes:grid.419649.7
169 schema:familyName Steadman
170 schema:givenName J. R.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771633230.42
172 rdf:type schema:Person
173 grid-institutes:grid.413079.8 schema:alternateName Department of Orthopaedic Surgery, University of California at Davis Medical Center, Sacramento, California, USA
174 schema:name Department of Orthopaedic Surgery, University of California at Davis Medical Center, Sacramento, California, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.419649.7 schema:alternateName Basic Science Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
177 Clinical Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
178 Orthopaedic Surgeon and Principal, Steadman Hawkins Clinic and Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
179 schema:name Basic Science Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
180 Clinical Research, Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
181 Orthopaedic Surgeon and Principal, Steadman Hawkins Clinic and Steadman Hawkins Sports Medicine Foundation, Vail, Colorado, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...