$ L^p $-Theory of the Stokes equation in a half space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Wolfgang Desch, Matthias Hieber, Jan Prüss

ABSTRACT

In this paper, we investigate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^p$\end{document}-estimates for the solution of the Stokes equation in a half space H where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ 1\leq p \leq \infty $\end{document}. It is shown that the solution of the Stokes equation is governed by an analytic semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ BUC_\sigma(H), C_{0,\sigma}(H) $\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^\infty_\sigma(H) $\end{document}. From the operatortheoretical point of view it is a surprising fact that the corresponding result for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1_\sigma(H) $\end{document} does not hold true. In fact, there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1 $\end{document}-function f satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\it div} f = 0 $\end{document} such that the solution of the corresponding resolvent equation with right hand side f does not belong to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^1$\end{document}. Taking into account however a recent result of Kozono on the nonlinear Navier-Stokes equation, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1 $\end{document}-result is not surprising and even natural. We also show that the Stokes operator admits a R-bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ H^\infty $\end{document}-calculus on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^p $\end{document} for 1 < p <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \infty $\end{document} and obtain as a consequence maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^p-L^q $\end{document}-regularity for the solution of the Stokes equation. More... »

PAGES

115-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/pl00001362

DOI

http://dx.doi.org/10.1007/pl00001362

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005664991


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Graz", 
          "id": "https://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Institut f\u00fcr Mathematik, Universit\u00e4t Graz, Heinrichstr. 36, A-8010 Graz, Austria, e-mail: georg.desch@kfunigraz.ac.at, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desch", 
        "givenName": "Wolfgang", 
        "id": "sg:person.0751770263.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751770263.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Fachbereich Mathematik, Angewandte Analysis, Technische Universit\u00e4t Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt, Germany, e-mail: hieber@mathematik.tu-darmstadt.de, GE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hieber", 
        "givenName": "Matthias", 
        "id": "sg:person.012520045471.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520045471.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Fachbereich f\u00fcr Mathematik und Informatik, Institut f\u00fcr Analysis, Martin-Luther-Universit\u00e4t Halle-Wittenberg, Theodor-Lieser-Str. 5, D-06099 Halle, Germany, e-mail: anokd@volterra.mathematik.uni-halle.de, GE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pr\u00fcss", 
        "givenName": "Jan", 
        "id": "sg:person.016157722433.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157722433.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01214869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018470856", 
          "https://doi.org/10.1007/bf01214869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018470856", 
          "https://doi.org/10.1007/bf01214869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(91)90136-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021692561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025153209", 
          "https://doi.org/10.1007/pl00004735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160400506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026162424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160400506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026162424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8765-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030524786", 
          "https://doi.org/10.1007/978-3-0348-8765-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8765-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030524786", 
          "https://doi.org/10.1007/978-3-0348-8765-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700037393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040990598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043717664", 
          "https://doi.org/10.1007/bf01200362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043717664", 
          "https://doi.org/10.1007/bf01200362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01084616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047063841", 
          "https://doi.org/10.1007/bf01084616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01084616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047063841", 
          "https://doi.org/10.1007/bf01084616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2206/kyushujm.50.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047461802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002080050224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048625526", 
          "https://doi.org/10.1007/s002080050224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "In this paper, we investigate \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $L^p$\\end{document}-estimates for the solution of the Stokes equation in a half space H where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ 1\\leq p \\leq \\infty $\\end{document}. It is shown that the solution of the Stokes equation is governed by an analytic semigroup on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ BUC_\\sigma(H), C_{0,\\sigma}(H) $\\end{document} or \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^\\infty_\\sigma(H) $\\end{document}. From the operatortheoretical point of view it is a surprising fact that the corresponding result for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^1_\\sigma(H) $\\end{document} does not hold true. In fact, there exists an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^1 $\\end{document}-function f satisfying \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ {\\it div} f = 0 $\\end{document} such that the solution of the corresponding resolvent equation with right hand side f does not belong to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $L^1$\\end{document}. Taking into account however a recent result of Kozono on the nonlinear Navier-Stokes equation, the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^1 $\\end{document}-result is not surprising and even natural. We also show that the Stokes operator admits a R-bounded \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ H^\\infty $\\end{document}-calculus on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^p $\\end{document} for 1 < p <\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ \\infty $\\end{document} and obtain as a consequence maximal \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ L^p-L^q $\\end{document}-regularity for the solution of the Stokes equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/pl00001362", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "$ L^p $-Theory of the Stokes equation in a half space", 
    "pagination": "115-142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1afda103e52a9dfd0a43c55b9fd949cd251f2106f581037f3a7a95285e7764dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/pl00001362"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005664991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/pl00001362", 
      "https://app.dimensions.ai/details/publication/pub.1005664991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FPL00001362"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/pl00001362'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/pl00001362'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/pl00001362'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/pl00001362'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/pl00001362 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N592d4f851fbd4f1b8abf962d3311b19f
4 schema:citation sg:pub.10.1007/978-3-0348-8765-6_17
5 sg:pub.10.1007/bf01084616
6 sg:pub.10.1007/bf01200362
7 sg:pub.10.1007/bf01214869
8 sg:pub.10.1007/pl00004735
9 sg:pub.10.1007/s002080050224
10 https://doi.org/10.1002/cpa.3160400506
11 https://doi.org/10.1016/0022-1236(91)90136-s
12 https://doi.org/10.1017/s1446788700037393
13 https://doi.org/10.2206/kyushujm.50.1
14 schema:datePublished 2001-03
15 schema:datePublishedReg 2001-03-01
16 schema:description In this paper, we investigate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^p$\end{document}-estimates for the solution of the Stokes equation in a half space H where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ 1\leq p \leq \infty $\end{document}. It is shown that the solution of the Stokes equation is governed by an analytic semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ BUC_\sigma(H), C_{0,\sigma}(H) $\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^\infty_\sigma(H) $\end{document}. From the operatortheoretical point of view it is a surprising fact that the corresponding result for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1_\sigma(H) $\end{document} does not hold true. In fact, there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1 $\end{document}-function f satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\it div} f = 0 $\end{document} such that the solution of the corresponding resolvent equation with right hand side f does not belong to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^1$\end{document}. Taking into account however a recent result of Kozono on the nonlinear Navier-Stokes equation, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^1 $\end{document}-result is not surprising and even natural. We also show that the Stokes operator admits a R-bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ H^\infty $\end{document}-calculus on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^p $\end{document} for 1 < p <\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \infty $\end{document} and obtain as a consequence maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ L^p-L^q $\end{document}-regularity for the solution of the Stokes equation.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2b2cbd4ea17742779275209ed8fb4401
21 N9f1666060ef14146a2bfa2c5c9bdf7ce
22 sg:journal.1136368
23 schema:name $ L^p $-Theory of the Stokes equation in a half space
24 schema:pagination 115-142
25 schema:productId N902dc626f5b34093b5d2da6cd70e379e
26 Na53d6e7079204c6a9a436cb2690ad2f8
27 Nb126688599424ddc8479fe5785213ec1
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005664991
29 https://doi.org/10.1007/pl00001362
30 schema:sdDatePublished 2019-04-10T13:21
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nf55e5d2276b642339a5dc1063ef9d1d3
33 schema:url http://link.springer.com/10.1007%2FPL00001362
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N2b2cbd4ea17742779275209ed8fb4401 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N592d4f851fbd4f1b8abf962d3311b19f rdf:first sg:person.0751770263.46
40 rdf:rest Nb6f658cded64445499a9ed8d96694717
41 N853bfd16f46545bc9e71d9a24c448a46 rdf:first sg:person.016157722433.00
42 rdf:rest rdf:nil
43 N902dc626f5b34093b5d2da6cd70e379e schema:name dimensions_id
44 schema:value pub.1005664991
45 rdf:type schema:PropertyValue
46 N9f1666060ef14146a2bfa2c5c9bdf7ce schema:volumeNumber 1
47 rdf:type schema:PublicationVolume
48 Na53d6e7079204c6a9a436cb2690ad2f8 schema:name readcube_id
49 schema:value 1afda103e52a9dfd0a43c55b9fd949cd251f2106f581037f3a7a95285e7764dd
50 rdf:type schema:PropertyValue
51 Nb126688599424ddc8479fe5785213ec1 schema:name doi
52 schema:value 10.1007/pl00001362
53 rdf:type schema:PropertyValue
54 Nb6f658cded64445499a9ed8d96694717 rdf:first sg:person.012520045471.22
55 rdf:rest N853bfd16f46545bc9e71d9a24c448a46
56 Nf55e5d2276b642339a5dc1063ef9d1d3 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
59 schema:name Psychology and Cognitive Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
62 schema:name Psychology
63 rdf:type schema:DefinedTerm
64 sg:journal.1136368 schema:issn 1424-3199
65 1424-3202
66 schema:name Journal of Evolution Equations
67 rdf:type schema:Periodical
68 sg:person.012520045471.22 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
69 schema:familyName Hieber
70 schema:givenName Matthias
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520045471.22
72 rdf:type schema:Person
73 sg:person.016157722433.00 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
74 schema:familyName Prüss
75 schema:givenName Jan
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157722433.00
77 rdf:type schema:Person
78 sg:person.0751770263.46 schema:affiliation https://www.grid.ac/institutes/grid.5110.5
79 schema:familyName Desch
80 schema:givenName Wolfgang
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751770263.46
82 rdf:type schema:Person
83 sg:pub.10.1007/978-3-0348-8765-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030524786
84 https://doi.org/10.1007/978-3-0348-8765-6_17
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01084616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047063841
87 https://doi.org/10.1007/bf01084616
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01200362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043717664
90 https://doi.org/10.1007/bf01200362
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01214869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018470856
93 https://doi.org/10.1007/bf01214869
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/pl00004735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025153209
96 https://doi.org/10.1007/pl00004735
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s002080050224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048625526
99 https://doi.org/10.1007/s002080050224
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/cpa.3160400506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026162424
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0022-1236(91)90136-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1021692561
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s1446788700037393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040990598
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2206/kyushujm.50.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047461802
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.5110.5 schema:alternateName University of Graz
110 schema:name Institut für Mathematik, Universität Graz, Heinrichstr. 36, A-8010 Graz, Austria, e-mail: georg.desch@kfunigraz.ac.at, AT
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
113 schema:name Fachbereich Mathematik, Angewandte Analysis, Technische Universität Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt, Germany, e-mail: hieber@mathematik.tu-darmstadt.de, GE
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg
116 schema:name Fachbereich für Mathematik und Informatik, Institut für Analysis, Martin-Luther-Universität Halle-Wittenberg, Theodor-Lieser-Str. 5, D-06099 Halle, Germany, e-mail: anokd@volterra.mathematik.uni-halle.de, GE
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...