Folding orthosymplectic quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-10

AUTHORS

Antoine Bourget, Julius F. Grimminger, Amihay Hanany, Rudolph Kalveks, Marcus Sperling, Zhenghao Zhong

ABSTRACT

Folding identical legs of a simply-laced quiver creates a quiver with a non-simply laced edge. So far, this has been explored for quivers containing unitary gauge groups. In this paper, orthosymplectic quivers are folded, giving rise to a new family of quivers. This is realised by intersecting orientifolds in the brane system. The monopole formula for these non-simply laced orthosymplectic quivers is introduced. Some of the folded quivers have Coulomb branches that are closures of minimal nilpotent orbits of exceptional algebras, thus providing a new construction of these fundamental moduli spaces. Moreover, a general family of folded orthosymplectic quivers is shown to be a new magnetic quiver realisation of Higgs branches of 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theories. The Hasse (phase) diagrams of certain families are derived via quiver subtraction as well as Kraft-Procesi transitions in the brane system. More... »

PAGES

70

References to SciGraph publications

  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-27. Fractional quiver W-algebras in LETTERS IN MATHEMATICAL PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-12. Complexity and nilpotent orbits in MANUSCRIPTA MATHEMATICA
  • 2020-12-24. Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10-16. Coulomb branch quantization and abelianized monopole bubbling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-05-28. Factorised 3d N = 4 orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-06-15. The ABCDEFG of little strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-04-30. The ABCDEF’s of matrix models for supersymmetric Chern-Simons theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-15. On three-dimensional quiver gauge theories of type B in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Magnetic quivers for rank 1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-12-22. Anomaly matching on the Higgs branch in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-06. Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-23. Compactifications of 5d SCFTs with a twist in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-02-27. Magnetic quivers, Higgs branches, and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-10-30. 4d gauge theories and quivers: the non-simply laced case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-05-16. Expanding the landscape of N = 2 rank 1 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-05. S-fold magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. E8 instantons on type-A ALE spaces and supersymmetric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Ungauging schemes and Coulomb branches of non-simply laced quiver theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-24. Hasse diagrams for 3d N = 4 quiver gauge theories — Inversion and the full moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-09. Coulomb branch operators and mirror symmetry in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-06-28. Quantum integrability from non-simply laced quiver gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-03. Symplectic singularities in INVENTIONES MATHEMATICAE
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-01-15. Quiver origami: discrete gauging and folding in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2021)070

    DOI

    http://dx.doi.org/10.1007/jhep12(2021)070

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143815355


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourget", 
            "givenName": "Antoine", 
            "id": "sg:person.012105771151.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimminger", 
            "givenName": "Julius F.", 
            "id": "sg:person.012432740125.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalveks", 
            "givenName": "Rudolph", 
            "id": "sg:person.014000413552.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yau Mathematical Sciences Center, Tsinghua University, 100084, Haidian District, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "Yau Mathematical Sciences Center, Tsinghua University, 100084, Haidian District, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhong", 
            "givenName": "Zhenghao", 
            "id": "sg:person.014651311720.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131327365", 
              "https://doi.org/10.1007/jhep09(2020)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135167235", 
              "https://doi.org/10.1007/jhep02(2021)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2019)179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122022362", 
              "https://doi.org/10.1007/jhep10(2019)179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133541670", 
              "https://doi.org/10.1007/jhep12(2020)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-4094-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003414083", 
              "https://doi.org/10.1007/978-1-4757-4094-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2020)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125143898", 
              "https://doi.org/10.1007/jhep02(2020)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026075445", 
              "https://doi.org/10.1007/jhep10(2012)190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131333828", 
              "https://doi.org/10.1007/jhep09(2020)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119905953", 
              "https://doi.org/10.1007/jhep07(2019)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103750147", 
              "https://doi.org/10.1007/jhep04(2018)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2016)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003538586", 
              "https://doi.org/10.1007/jhep05(2016)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134131855", 
              "https://doi.org/10.1007/jhep12(2020)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134630975", 
              "https://doi.org/10.1007/jhep01(2021)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074198899", 
              "https://doi.org/10.1007/jhep01(2017)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2021)269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138438792", 
              "https://doi.org/10.1007/jhep05(2021)269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092002758", 
              "https://doi.org/10.1007/jhep09(2017)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2017)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099919702", 
              "https://doi.org/10.1007/jhep12(2017)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091817147", 
              "https://doi.org/10.1007/jhep09(2017)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018263040", 
              "https://doi.org/10.1007/bf02567611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124331365", 
              "https://doi.org/10.1007/jhep01(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126020752", 
              "https://doi.org/10.1007/jhep03(2020)176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2012)138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000480227", 
              "https://doi.org/10.1007/jhep04(2012)138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026106468", 
              "https://doi.org/10.1007/s002200100446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-018-1087-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103669468", 
              "https://doi.org/10.1007/s11005-018-1087-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131199576", 
              "https://doi.org/10.1007/jhep09(2020)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002229900043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041729477", 
              "https://doi.org/10.1007/s002229900043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2018)165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105213265", 
              "https://doi.org/10.1007/jhep06(2018)165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2021)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138888438", 
              "https://doi.org/10.1007/jhep06(2021)092"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-10", 
        "datePublishedReg": "2021-12-10", 
        "description": "Folding identical legs of a simply-laced quiver creates a quiver with a non-simply laced edge. So far, this has been explored for quivers containing unitary gauge groups. In this paper, orthosymplectic quivers are folded, giving rise to a new family of quivers. This is realised by intersecting orientifolds in the brane system. The monopole formula for these non-simply laced orthosymplectic quivers is introduced. Some of the folded quivers have Coulomb branches that are closures of minimal nilpotent orbits of exceptional algebras, thus providing a new construction of these fundamental moduli spaces. Moreover, a general family of folded orthosymplectic quivers is shown to be a new magnetic quiver realisation of Higgs branches of 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 theories. The Hasse (phase) diagrams of certain families are derived via quiver subtraction as well as Kraft-Procesi transitions in the brane system.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep12(2021)070", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8672070", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "brane system", 
          "minimal nilpotent orbit", 
          "unitary gauge groups", 
          "exceptional algebras", 
          "Kraft-Procesi transitions", 
          "nilpotent orbits", 
          "moduli space", 
          "Higgs branch", 
          "Coulomb branch", 
          "quivers", 
          "gauge group", 
          "monopole formula", 
          "general family", 
          "certain families", 
          "Hasse diagram", 
          "algebra", 
          "new family", 
          "orientifolds", 
          "identical legs", 
          "new construction", 
          "orbit", 
          "theory", 
          "formula", 
          "space", 
          "system", 
          "diagram", 
          "branches", 
          "edge", 
          "transition", 
          "realisation", 
          "construction", 
          "subtraction", 
          "Non", 
          "family", 
          "rise", 
          "closure", 
          "leg", 
          "group", 
          "paper"
        ], 
        "name": "Folding orthosymplectic quivers", 
        "pagination": "70", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143815355"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2021)070"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2021)070", 
          "https://app.dimensions.ai/details/publication/pub.1143815355"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_911.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep12(2021)070"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2021)070'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2021)070'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2021)070'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2021)070'


     

    This table displays all metadata directly associated to this object as RDF triples.

    342 TRIPLES      21 PREDICATES      114 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2021)070 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd24ef6f2177f4d078b5b9e5aafc672d0
    4 schema:citation sg:pub.10.1007/978-1-4757-4094-3
    5 sg:pub.10.1007/bf02565876
    6 sg:pub.10.1007/bf02567611
    7 sg:pub.10.1007/jhep01(2013)070
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2015)150
    10 sg:pub.10.1007/jhep01(2017)097
    11 sg:pub.10.1007/jhep01(2019)068
    12 sg:pub.10.1007/jhep01(2020)157
    13 sg:pub.10.1007/jhep01(2021)086
    14 sg:pub.10.1007/jhep02(2020)184
    15 sg:pub.10.1007/jhep02(2021)054
    16 sg:pub.10.1007/jhep03(2020)176
    17 sg:pub.10.1007/jhep04(2012)138
    18 sg:pub.10.1007/jhep04(2017)042
    19 sg:pub.10.1007/jhep04(2018)037
    20 sg:pub.10.1007/jhep04(2018)127
    21 sg:pub.10.1007/jhep05(2016)088
    22 sg:pub.10.1007/jhep05(2021)269
    23 sg:pub.10.1007/jhep06(2010)100
    24 sg:pub.10.1007/jhep06(2016)130
    25 sg:pub.10.1007/jhep06(2018)165
    26 sg:pub.10.1007/jhep06(2021)092
    27 sg:pub.10.1007/jhep07(2018)061
    28 sg:pub.10.1007/jhep07(2018)098
    29 sg:pub.10.1007/jhep07(2018)168
    30 sg:pub.10.1007/jhep07(2019)137
    31 sg:pub.10.1007/jhep07(2020)204
    32 sg:pub.10.1007/jhep09(2014)178
    33 sg:pub.10.1007/jhep09(2014)185
    34 sg:pub.10.1007/jhep09(2017)067
    35 sg:pub.10.1007/jhep09(2017)144
    36 sg:pub.10.1007/jhep09(2018)008
    37 sg:pub.10.1007/jhep09(2020)159
    38 sg:pub.10.1007/jhep09(2020)189
    39 sg:pub.10.1007/jhep09(2020)193
    40 sg:pub.10.1007/jhep10(2012)190
    41 sg:pub.10.1007/jhep10(2014)152
    42 sg:pub.10.1007/jhep10(2019)179
    43 sg:pub.10.1007/jhep11(2010)099
    44 sg:pub.10.1007/jhep11(2016)175
    45 sg:pub.10.1007/jhep11(2017)079
    46 sg:pub.10.1007/jhep12(2014)103
    47 sg:pub.10.1007/jhep12(2015)118
    48 sg:pub.10.1007/jhep12(2017)127
    49 sg:pub.10.1007/jhep12(2020)092
    50 sg:pub.10.1007/jhep12(2020)164
    51 sg:pub.10.1007/s00220-017-2903-0
    52 sg:pub.10.1007/s002200100446
    53 sg:pub.10.1007/s002229900043
    54 sg:pub.10.1007/s11005-018-1087-7
    55 schema:datePublished 2021-12-10
    56 schema:datePublishedReg 2021-12-10
    57 schema:description Folding identical legs of a simply-laced quiver creates a quiver with a non-simply laced edge. So far, this has been explored for quivers containing unitary gauge groups. In this paper, orthosymplectic quivers are folded, giving rise to a new family of quivers. This is realised by intersecting orientifolds in the brane system. The monopole formula for these non-simply laced orthosymplectic quivers is introduced. Some of the folded quivers have Coulomb branches that are closures of minimal nilpotent orbits of exceptional algebras, thus providing a new construction of these fundamental moduli spaces. Moreover, a general family of folded orthosymplectic quivers is shown to be a new magnetic quiver realisation of Higgs branches of 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theories. The Hasse (phase) diagrams of certain families are derived via quiver subtraction as well as Kraft-Procesi transitions in the brane system.
    58 schema:genre article
    59 schema:isAccessibleForFree true
    60 schema:isPartOf Na8655f42f5314eaea8b82a610ad78e4d
    61 Nff620ae61cc949a4b0ff2e667488a700
    62 sg:journal.1052482
    63 schema:keywords Coulomb branch
    64 Hasse diagram
    65 Higgs branch
    66 Kraft-Procesi transitions
    67 Non
    68 algebra
    69 branches
    70 brane system
    71 certain families
    72 closure
    73 construction
    74 diagram
    75 edge
    76 exceptional algebras
    77 family
    78 formula
    79 gauge group
    80 general family
    81 group
    82 identical legs
    83 leg
    84 minimal nilpotent orbit
    85 moduli space
    86 monopole formula
    87 new construction
    88 new family
    89 nilpotent orbits
    90 orbit
    91 orientifolds
    92 paper
    93 quivers
    94 realisation
    95 rise
    96 space
    97 subtraction
    98 system
    99 theory
    100 transition
    101 unitary gauge groups
    102 schema:name Folding orthosymplectic quivers
    103 schema:pagination 70
    104 schema:productId N43242cca97ee4b57a9c0616500b170e4
    105 Nd7b1feae59e54af0b1e6d3dbc72d5663
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143815355
    107 https://doi.org/10.1007/jhep12(2021)070
    108 schema:sdDatePublished 2022-10-01T06:50
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N8ae269667b8d4c65a8109b7298ef4c79
    111 schema:url https://doi.org/10.1007/jhep12(2021)070
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N00a14bed7b6b401eaba34699054e5eea rdf:first sg:person.013671173243.88
    116 rdf:rest Nf721edb4e4c94172a1f550b5107a3082
    117 N1f0f24f8a3844353a8082dcc296dd31f rdf:first sg:person.012155553275.80
    118 rdf:rest N2bd0f5e37baa4c6398cc0b5306ce5c9e
    119 N2bd0f5e37baa4c6398cc0b5306ce5c9e rdf:first sg:person.014000413552.15
    120 rdf:rest N00a14bed7b6b401eaba34699054e5eea
    121 N43242cca97ee4b57a9c0616500b170e4 schema:name dimensions_id
    122 schema:value pub.1143815355
    123 rdf:type schema:PropertyValue
    124 N8ae269667b8d4c65a8109b7298ef4c79 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Na6c4b7ffeaba422a90dd0c3430356220 rdf:first sg:person.012432740125.61
    127 rdf:rest N1f0f24f8a3844353a8082dcc296dd31f
    128 Na8655f42f5314eaea8b82a610ad78e4d schema:issueNumber 12
    129 rdf:type schema:PublicationIssue
    130 Nd24ef6f2177f4d078b5b9e5aafc672d0 rdf:first sg:person.012105771151.34
    131 rdf:rest Na6c4b7ffeaba422a90dd0c3430356220
    132 Nd7b1feae59e54af0b1e6d3dbc72d5663 schema:name doi
    133 schema:value 10.1007/jhep12(2021)070
    134 rdf:type schema:PropertyValue
    135 Nf721edb4e4c94172a1f550b5107a3082 rdf:first sg:person.014651311720.05
    136 rdf:rest rdf:nil
    137 Nff620ae61cc949a4b0ff2e667488a700 schema:volumeNumber 2021
    138 rdf:type schema:PublicationVolume
    139 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Mathematical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Pure Mathematics
    144 rdf:type schema:DefinedTerm
    145 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep12(2021)070
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.8672070 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep12(2021)070
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1052482 schema:issn 1029-8479
    150 1126-6708
    151 schema:name Journal of High Energy Physics
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.012105771151.34 schema:affiliation grid-institutes:grid.7445.2
    155 schema:familyName Bourget
    156 schema:givenName Antoine
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34
    158 rdf:type schema:Person
    159 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    160 schema:familyName Hanany
    161 schema:givenName Amihay
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    163 rdf:type schema:Person
    164 sg:person.012432740125.61 schema:affiliation grid-institutes:grid.7445.2
    165 schema:familyName Grimminger
    166 schema:givenName Julius F.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61
    168 rdf:type schema:Person
    169 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.12527.33
    170 schema:familyName Sperling
    171 schema:givenName Marcus
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    173 rdf:type schema:Person
    174 sg:person.014000413552.15 schema:affiliation grid-institutes:grid.7445.2
    175 schema:familyName Kalveks
    176 schema:givenName Rudolph
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15
    178 rdf:type schema:Person
    179 sg:person.014651311720.05 schema:affiliation grid-institutes:grid.7445.2
    180 schema:familyName Zhong
    181 schema:givenName Zhenghao
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05
    183 rdf:type schema:Person
    184 sg:pub.10.1007/978-1-4757-4094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003414083
    185 https://doi.org/10.1007/978-1-4757-4094-3
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    188 https://doi.org/10.1007/bf02565876
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf02567611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018263040
    191 https://doi.org/10.1007/bf02567611
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    194 https://doi.org/10.1007/jhep01(2013)070
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    197 https://doi.org/10.1007/jhep01(2014)005
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    200 https://doi.org/10.1007/jhep01(2015)150
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep01(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198899
    203 https://doi.org/10.1007/jhep01(2017)097
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    206 https://doi.org/10.1007/jhep01(2019)068
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
    209 https://doi.org/10.1007/jhep01(2020)157
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep01(2021)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134630975
    212 https://doi.org/10.1007/jhep01(2021)086
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep02(2020)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125143898
    215 https://doi.org/10.1007/jhep02(2020)184
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep02(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
    218 https://doi.org/10.1007/jhep02(2021)054
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
    221 https://doi.org/10.1007/jhep03(2020)176
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep04(2012)138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000480227
    224 https://doi.org/10.1007/jhep04(2012)138
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    227 https://doi.org/10.1007/jhep04(2017)042
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep04(2018)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103750147
    230 https://doi.org/10.1007/jhep04(2018)037
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    233 https://doi.org/10.1007/jhep04(2018)127
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep05(2016)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003538586
    236 https://doi.org/10.1007/jhep05(2016)088
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep05(2021)269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138438792
    239 https://doi.org/10.1007/jhep05(2021)269
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    242 https://doi.org/10.1007/jhep06(2010)100
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    245 https://doi.org/10.1007/jhep06(2016)130
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/jhep06(2018)165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105213265
    248 https://doi.org/10.1007/jhep06(2018)165
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/jhep06(2021)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138888438
    251 https://doi.org/10.1007/jhep06(2021)092
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    254 https://doi.org/10.1007/jhep07(2018)061
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    257 https://doi.org/10.1007/jhep07(2018)098
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    260 https://doi.org/10.1007/jhep07(2018)168
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
    263 https://doi.org/10.1007/jhep07(2019)137
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    266 https://doi.org/10.1007/jhep07(2020)204
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    269 https://doi.org/10.1007/jhep09(2014)178
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    272 https://doi.org/10.1007/jhep09(2014)185
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/jhep09(2017)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091817147
    275 https://doi.org/10.1007/jhep09(2017)067
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/jhep09(2017)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002758
    278 https://doi.org/10.1007/jhep09(2017)144
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    281 https://doi.org/10.1007/jhep09(2018)008
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/jhep09(2020)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131199576
    284 https://doi.org/10.1007/jhep09(2020)159
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/jhep09(2020)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131333828
    287 https://doi.org/10.1007/jhep09(2020)189
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/jhep09(2020)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131327365
    290 https://doi.org/10.1007/jhep09(2020)193
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/jhep10(2012)190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026075445
    293 https://doi.org/10.1007/jhep10(2012)190
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    296 https://doi.org/10.1007/jhep10(2014)152
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/jhep10(2019)179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122022362
    299 https://doi.org/10.1007/jhep10(2019)179
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    302 https://doi.org/10.1007/jhep11(2010)099
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    305 https://doi.org/10.1007/jhep11(2016)175
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    308 https://doi.org/10.1007/jhep11(2017)079
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    311 https://doi.org/10.1007/jhep12(2014)103
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    314 https://doi.org/10.1007/jhep12(2015)118
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1007/jhep12(2017)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099919702
    317 https://doi.org/10.1007/jhep12(2017)127
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
    320 https://doi.org/10.1007/jhep12(2020)092
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1007/jhep12(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134131855
    323 https://doi.org/10.1007/jhep12(2020)164
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    326 https://doi.org/10.1007/s00220-017-2903-0
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1007/s002200100446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026106468
    329 https://doi.org/10.1007/s002200100446
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1007/s002229900043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041729477
    332 https://doi.org/10.1007/s002229900043
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1007/s11005-018-1087-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103669468
    335 https://doi.org/10.1007/s11005-018-1087-7
    336 rdf:type schema:CreativeWork
    337 grid-institutes:grid.12527.33 schema:alternateName Yau Mathematical Sciences Center, Tsinghua University, 100084, Haidian District, Beijing, China
    338 schema:name Yau Mathematical Sciences Center, Tsinghua University, 100084, Haidian District, Beijing, China
    339 rdf:type schema:Organization
    340 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    341 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    342 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...