Understanding the MiniBooNE and the muon and electron g − 2 anomalies with a light Z′ and a second Higgs ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-12-29

AUTHORS

Waleed Abdallah, Raj Gandhi, Samiran Roy

ABSTRACT

Two of the most widely studied extensions of the Standard Model (SM) are a) the addition of a new U(1) symmetry to its existing gauge groups, and b) the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when combined, they allow us to understand the electron-like event excess seen in the MiniBooNE (MB) experiment as well as account for the observed anomalous values of the muon magnetic moment. A light Z′ associated with an additional U(1) coupled to baryons and to the dark sector, with flavor non-universal couplings to leptons, in conjunction with a second Higgs doublet is capable of explaining the MB excess. The Z′ obtains its mass from a dark singlet scalar, which mixes with the two Higgs doublets. Choosing benchmark parameter values, we show that U1B−3Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{B-3{L}_{\tau }} $$\end{document}, which is anomaly-free, and U(1)B, both provide (phenomenologically) equally good solutions to the excess. We also point out the other (anomaly-free) U(1) choices that may be possible upon fuller exploration of the parameter space. We obtain very good matches to the energy and angular distributions for neutrinos and anti-neutrinos in MB. The extended Higgs sector has two light CP-even scalars, h′ and H , and their masses and couplings are such that in principle, both contribute to help explain the MB excess as well as the present observed values of the muon and electron g − 2. We discuss the constraints on our model as well as future tests. Our work underlines the role that light scalars may play in understanding present-day low-energy anomalies. It also points to the possible existence of portals to the dark sector, i.e., a light gauge boson field (Z′) and a dark neutrino which mixes with the active neutrinos, as well as a dark sector light scalar which mixes with the extended Higgs sector. More... »

PAGES

188

References to SciGraph publications

  • 2020-03-02. Non-standard interactions in radiative neutrino mass models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-13. A viable QCD axion in the MeV mass range in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-28. Updated constraints on non-standard interactions from global analysis of oscillation data in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-17. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-20. Boosted dark matter in IceCube and at the galactic center in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-03-04. A light complex scalar for the electron and muon anomalous magnetic moments in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-09-09. Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly in EUROPEAN PHYSICAL JOURNAL C
  • 2020-04-29. A light scalar explanation of (g − 2)μ and the KOTO anomaly in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-03-01. Measuring the leading hadronic contribution to the muon g-2 via μe scattering in EUROPEAN PHYSICAL JOURNAL C
  • 2003-07. General formulae for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_1 \to f_2 \gamma$\end{document} in EUROPEAN PHYSICAL JOURNAL C
  • 2020-07-21. On the decaying-sterile-neutrino solution to the electron (anti)neutrino appearance anomalies in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-02-28. Enhanced di-Higgs production in the two Higgs doublet model in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-17. Breaking local baryon and lepton number at the TeV scale in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-27. Neutrinoless double beta decay versus other probes of heavy sterile neutrinos in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-15. Heavy neutrino decays at MiniBooNE in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07-12. Vanishing minors in the neutrino mass matrix from abelian gauge symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-09. The high energy neutrino cross-section in the Standard Model and its uncertainty in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-06-01. Serendipity in dark photon searches in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-05-07. The search for heavy Majorana neutrinos in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-26. Updated global 3+1 analysis of short-baseline neutrino oscillations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-02. Neutrino portals to dark matter in EUROPEAN PHYSICAL JOURNAL C
  • 2016-08-08. Shedding light on neutrino masses with dark forces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-11-06. Nonstandard neutrino interactions at COHERENT, DUNE, T2HK and LHC in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-04-15. Matter–antimatter symmetry violated in NATURE
  • 2018-08-03. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2020)188

    DOI

    http://dx.doi.org/10.1007/jhep12(2020)188

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134342752


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Cairo University, 12613, Giza, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.7776.1", 
              "name": [
                "Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India", 
                "Department of Mathematics, Faculty of Science, Cairo University, 12613, Giza, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdallah", 
            "givenName": "Waleed", 
            "id": "sg:person.014105150001.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105150001.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India", 
              "id": "http://www.grid.ac/institutes/grid.450311.2", 
              "name": [
                "Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandhi", 
            "givenName": "Raj", 
            "id": "sg:person.014550335301.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550335301.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physical Research Laboratory, 380009, Ahmedabad, Gujarat, India", 
              "id": "http://www.grid.ac/institutes/grid.465082.d", 
              "name": [
                "Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India", 
                "Physical Research Laboratory, 380009, Ahmedabad, Gujarat, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Samiran", 
            "id": "sg:person.012536637553.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536637553.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep06(2017)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090306934", 
              "https://doi.org/10.1007/jhep06(2017)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2020)197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127257779", 
              "https://doi.org/10.1007/jhep04(2020)197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004584854", 
              "https://doi.org/10.1007/jhep08(2016)052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/d41586-020-01000-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126649857", 
              "https://doi.org/10.1038/d41586-020-01000-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-019-7256-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120942071", 
              "https://doi.org/10.1140/epjc/s10052-019-7256-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-017-4633-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084226493", 
              "https://doi.org/10.1140/epjc/s10052-017-4633-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2019)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112471927", 
              "https://doi.org/10.1007/jhep02(2019)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106008487", 
              "https://doi.org/10.1007/jhep08(2018)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013801660", 
              "https://doi.org/10.1007/jhep04(2015)105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024796629", 
              "https://doi.org/10.1007/jhep07(2014)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106407647", 
              "https://doi.org/10.1007/jhep08(2018)180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052958407", 
              "https://doi.org/10.1007/jhep01(2013)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2019)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122484186", 
              "https://doi.org/10.1007/jhep11(2019)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125953749", 
              "https://doi.org/10.1007/jhep03(2020)170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105597486", 
              "https://doi.org/10.1007/jhep07(2018)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2019)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112540481", 
              "https://doi.org/10.1007/jhep03(2019)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2018)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104368452", 
              "https://doi.org/10.1007/jhep06(2018)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s2003-01212-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031501552", 
              "https://doi.org/10.1140/epjc/s2003-01212-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129571808", 
              "https://doi.org/10.1007/jhep07(2020)141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019070201", 
              "https://doi.org/10.1007/jhep08(2011)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-019-7060-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117707546", 
              "https://doi.org/10.1140/epjc/s10052-019-7060-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005086828", 
              "https://doi.org/10.1007/jhep07(2012)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029086376", 
              "https://doi.org/10.1007/jhep08(2011)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125342646", 
              "https://doi.org/10.1007/jhep03(2020)006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/05/030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005924980", 
              "https://doi.org/10.1088/1126-6708/2009/05/030"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-12-29", 
        "datePublishedReg": "2020-12-29", 
        "description": "Two of the most widely studied extensions of the Standard Model (SM) are a) the addition of a new U(1) symmetry to its existing gauge groups, and b) the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when combined, they allow us to understand the electron-like event excess seen in the MiniBooNE (MB) experiment as well as account for the observed anomalous values of the muon magnetic moment. A light Z\u2032 associated with an additional U(1) coupled to baryons and to the dark sector, with flavor non-universal couplings to leptons, in conjunction with a second Higgs doublet is capable of explaining the MB excess. The Z\u2032 obtains its mass from a dark singlet scalar, which mixes with the two Higgs doublets. Choosing benchmark parameter values, we show that U1B\u22123L\u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathrm{U}{(1)}_{B-3{L}_{\\tau }} $$\\end{document}, which is anomaly-free, and U(1)B, both provide (phenomenologically) equally good solutions to the excess. We also point out the other (anomaly-free) U(1) choices that may be possible upon fuller exploration of the parameter space. We obtain very good matches to the energy and angular distributions for neutrinos and anti-neutrinos in MB. The extended Higgs sector has two light CP-even scalars, h\u2032 and H , and their masses and couplings are such that in principle, both contribute to help explain the MB excess as well as the present observed values of the muon and electron g \u2212 2. We discuss the constraints on our model as well as future tests. Our work underlines the role that light scalars may play in understanding present-day low-energy anomalies. It also points to the possible existence of portals to the dark sector, i.e., a light gauge boson field (Z\u2032) and a dark neutrino which mixes with the active neutrinos, as well as a dark sector light scalar which mixes with the extended Higgs sector.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep12(2020)188", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2020"
          }
        ], 
        "keywords": [
          "second Higgs doublet", 
          "extended Higgs sector", 
          "Higgs doublets", 
          "dark sector", 
          "light Z\u2032", 
          "light scalars", 
          "Higgs sector", 
          "standard model", 
          "muon magnetic moment", 
          "low-energy anomaly", 
          "gauge boson fields", 
          "non-universal couplings", 
          "dark neutrino", 
          "active neutrinos", 
          "present observed value", 
          "singlet scalar", 
          "MiniBooNE experiment", 
          "angular distributions", 
          "lightest CP", 
          "event excess", 
          "magnetic moment", 
          "scalar sector", 
          "boson field", 
          "parameter space", 
          "neutrinos", 
          "muons", 
          "electrons", 
          "doublet", 
          "scalar", 
          "possible existence", 
          "gauge group", 
          "coupling", 
          "MiniBooNE", 
          "observed values", 
          "future tests", 
          "baryons", 
          "leptons", 
          "Z\u2032", 
          "symmetry", 
          "mass", 
          "energy", 
          "good match", 
          "anomalous values", 
          "full exploration", 
          "excess", 
          "field", 
          "moment", 
          "parameter values", 
          "experiments", 
          "existence", 
          "distribution", 
          "anomalies", 
          "values", 
          "CP", 
          "-H", 
          "space", 
          "MB", 
          "model", 
          "conjunction", 
          "principles", 
          "expansion", 
          "account", 
          "work", 
          "constraints", 
          "match", 
          "extension", 
          "sector", 
          "solution", 
          "addition", 
          "exploration", 
          "choice", 
          "portal", 
          "role", 
          "test", 
          "best solution", 
          "group", 
          "electron-like event excess", 
          "observed anomalous values", 
          "flavor non-universal couplings", 
          "MB excess", 
          "dark singlet scalar", 
          "benchmark parameter values", 
          "present-day low-energy anomalies", 
          "light gauge boson field", 
          "dark sector light scalar", 
          "sector light scalar"
        ], 
        "name": "Understanding the MiniBooNE and the muon and electron g \u2212 2 anomalies with a light Z\u2032 and a second Higgs doublet", 
        "pagination": "188", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134342752"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2020)188"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2020)188", 
          "https://app.dimensions.ai/details/publication/pub.1134342752"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_838.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep12(2020)188"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2020)188'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2020)188'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2020)188'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2020)188'


     

    This table displays all metadata directly associated to this object as RDF triples.

    266 TRIPLES      22 PREDICATES      136 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2020)188 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N3d7f00f9ed7546b18ce2ff89f2f040cb
    4 schema:citation sg:pub.10.1007/jhep01(2013)106
    5 sg:pub.10.1007/jhep02(2019)193
    6 sg:pub.10.1007/jhep03(2019)008
    7 sg:pub.10.1007/jhep03(2020)006
    8 sg:pub.10.1007/jhep03(2020)170
    9 sg:pub.10.1007/jhep04(2015)105
    10 sg:pub.10.1007/jhep04(2020)197
    11 sg:pub.10.1007/jhep06(2017)135
    12 sg:pub.10.1007/jhep06(2018)004
    13 sg:pub.10.1007/jhep07(2012)083
    14 sg:pub.10.1007/jhep07(2014)079
    15 sg:pub.10.1007/jhep07(2018)092
    16 sg:pub.10.1007/jhep07(2020)141
    17 sg:pub.10.1007/jhep08(2011)042
    18 sg:pub.10.1007/jhep08(2011)068
    19 sg:pub.10.1007/jhep08(2016)052
    20 sg:pub.10.1007/jhep08(2018)010
    21 sg:pub.10.1007/jhep08(2018)180
    22 sg:pub.10.1007/jhep11(2019)028
    23 sg:pub.10.1038/d41586-020-01000-9
    24 sg:pub.10.1088/1126-6708/2009/05/030
    25 sg:pub.10.1140/epjc/s10052-017-4633-z
    26 sg:pub.10.1140/epjc/s10052-019-7060-5
    27 sg:pub.10.1140/epjc/s10052-019-7256-8
    28 sg:pub.10.1140/epjc/s2003-01212-7
    29 schema:datePublished 2020-12-29
    30 schema:datePublishedReg 2020-12-29
    31 schema:description Two of the most widely studied extensions of the Standard Model (SM) are a) the addition of a new U(1) symmetry to its existing gauge groups, and b) the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when combined, they allow us to understand the electron-like event excess seen in the MiniBooNE (MB) experiment as well as account for the observed anomalous values of the muon magnetic moment. A light Z′ associated with an additional U(1) coupled to baryons and to the dark sector, with flavor non-universal couplings to leptons, in conjunction with a second Higgs doublet is capable of explaining the MB excess. The Z′ obtains its mass from a dark singlet scalar, which mixes with the two Higgs doublets. Choosing benchmark parameter values, we show that U1B−3Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{B-3{L}_{\tau }} $$\end{document}, which is anomaly-free, and U(1)B, both provide (phenomenologically) equally good solutions to the excess. We also point out the other (anomaly-free) U(1) choices that may be possible upon fuller exploration of the parameter space. We obtain very good matches to the energy and angular distributions for neutrinos and anti-neutrinos in MB. The extended Higgs sector has two light CP-even scalars, h′ and H , and their masses and couplings are such that in principle, both contribute to help explain the MB excess as well as the present observed values of the muon and electron g − 2. We discuss the constraints on our model as well as future tests. Our work underlines the role that light scalars may play in understanding present-day low-energy anomalies. It also points to the possible existence of portals to the dark sector, i.e., a light gauge boson field (Z′) and a dark neutrino which mixes with the active neutrinos, as well as a dark sector light scalar which mixes with the extended Higgs sector.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Na963477402f3464785068bf557143f91
    36 Nc26c062a86084060a52f3592f74e7dc4
    37 sg:journal.1052482
    38 schema:keywords -H
    39 CP
    40 Higgs doublets
    41 Higgs sector
    42 MB
    43 MB excess
    44 MiniBooNE
    45 MiniBooNE experiment
    46 Z′
    47 account
    48 active neutrinos
    49 addition
    50 angular distributions
    51 anomalies
    52 anomalous values
    53 baryons
    54 benchmark parameter values
    55 best solution
    56 boson field
    57 choice
    58 conjunction
    59 constraints
    60 coupling
    61 dark neutrino
    62 dark sector
    63 dark sector light scalar
    64 dark singlet scalar
    65 distribution
    66 doublet
    67 electron-like event excess
    68 electrons
    69 energy
    70 event excess
    71 excess
    72 existence
    73 expansion
    74 experiments
    75 exploration
    76 extended Higgs sector
    77 extension
    78 field
    79 flavor non-universal couplings
    80 full exploration
    81 future tests
    82 gauge boson fields
    83 gauge group
    84 good match
    85 group
    86 leptons
    87 light Z′
    88 light gauge boson field
    89 light scalars
    90 lightest CP
    91 low-energy anomaly
    92 magnetic moment
    93 mass
    94 match
    95 model
    96 moment
    97 muon magnetic moment
    98 muons
    99 neutrinos
    100 non-universal couplings
    101 observed anomalous values
    102 observed values
    103 parameter space
    104 parameter values
    105 portal
    106 possible existence
    107 present observed value
    108 present-day low-energy anomalies
    109 principles
    110 role
    111 scalar
    112 scalar sector
    113 second Higgs doublet
    114 sector
    115 sector light scalar
    116 singlet scalar
    117 solution
    118 space
    119 standard model
    120 symmetry
    121 test
    122 values
    123 work
    124 schema:name Understanding the MiniBooNE and the muon and electron g − 2 anomalies with a light Z′ and a second Higgs doublet
    125 schema:pagination 188
    126 schema:productId N8eb42c3d2df740fd9b03ea049b867ecb
    127 Na521b890b5aa4913bd27b400a0d61f03
    128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134342752
    129 https://doi.org/10.1007/jhep12(2020)188
    130 schema:sdDatePublished 2022-01-01T18:56
    131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    132 schema:sdPublisher N25cfb527d7a04d5ab90d757cfc71fcd1
    133 schema:url https://doi.org/10.1007/jhep12(2020)188
    134 sgo:license sg:explorer/license/
    135 sgo:sdDataset articles
    136 rdf:type schema:ScholarlyArticle
    137 N1d175aba8f8e47bab5418f3e70ca8893 rdf:first sg:person.012536637553.97
    138 rdf:rest rdf:nil
    139 N25cfb527d7a04d5ab90d757cfc71fcd1 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N3d7f00f9ed7546b18ce2ff89f2f040cb rdf:first sg:person.014105150001.47
    142 rdf:rest N59952b026cf347e6ae03cb522a7b5103
    143 N59952b026cf347e6ae03cb522a7b5103 rdf:first sg:person.014550335301.05
    144 rdf:rest N1d175aba8f8e47bab5418f3e70ca8893
    145 N8eb42c3d2df740fd9b03ea049b867ecb schema:name doi
    146 schema:value 10.1007/jhep12(2020)188
    147 rdf:type schema:PropertyValue
    148 Na521b890b5aa4913bd27b400a0d61f03 schema:name dimensions_id
    149 schema:value pub.1134342752
    150 rdf:type schema:PropertyValue
    151 Na963477402f3464785068bf557143f91 schema:volumeNumber 2020
    152 rdf:type schema:PublicationVolume
    153 Nc26c062a86084060a52f3592f74e7dc4 schema:issueNumber 12
    154 rdf:type schema:PublicationIssue
    155 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Physical Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    160 rdf:type schema:DefinedTerm
    161 sg:journal.1052482 schema:issn 1029-8479
    162 1126-6708
    163 schema:name Journal of High Energy Physics
    164 schema:publisher Springer Nature
    165 rdf:type schema:Periodical
    166 sg:person.012536637553.97 schema:affiliation grid-institutes:grid.465082.d
    167 schema:familyName Roy
    168 schema:givenName Samiran
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536637553.97
    170 rdf:type schema:Person
    171 sg:person.014105150001.47 schema:affiliation grid-institutes:grid.7776.1
    172 schema:familyName Abdallah
    173 schema:givenName Waleed
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014105150001.47
    175 rdf:type schema:Person
    176 sg:person.014550335301.05 schema:affiliation grid-institutes:grid.450311.2
    177 schema:familyName Gandhi
    178 schema:givenName Raj
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550335301.05
    180 rdf:type schema:Person
    181 sg:pub.10.1007/jhep01(2013)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052958407
    182 https://doi.org/10.1007/jhep01(2013)106
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep02(2019)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112471927
    185 https://doi.org/10.1007/jhep02(2019)193
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep03(2019)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112540481
    188 https://doi.org/10.1007/jhep03(2019)008
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep03(2020)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125342646
    191 https://doi.org/10.1007/jhep03(2020)006
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep03(2020)170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125953749
    194 https://doi.org/10.1007/jhep03(2020)170
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep04(2015)105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013801660
    197 https://doi.org/10.1007/jhep04(2015)105
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep04(2020)197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127257779
    200 https://doi.org/10.1007/jhep04(2020)197
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep06(2017)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090306934
    203 https://doi.org/10.1007/jhep06(2017)135
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep06(2018)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104368452
    206 https://doi.org/10.1007/jhep06(2018)004
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep07(2012)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005086828
    209 https://doi.org/10.1007/jhep07(2012)083
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep07(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024796629
    212 https://doi.org/10.1007/jhep07(2014)079
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep07(2018)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105597486
    215 https://doi.org/10.1007/jhep07(2018)092
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep07(2020)141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129571808
    218 https://doi.org/10.1007/jhep07(2020)141
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep08(2011)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070201
    221 https://doi.org/10.1007/jhep08(2011)042
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep08(2011)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029086376
    224 https://doi.org/10.1007/jhep08(2011)068
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep08(2016)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004584854
    227 https://doi.org/10.1007/jhep08(2016)052
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep08(2018)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106008487
    230 https://doi.org/10.1007/jhep08(2018)010
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep08(2018)180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106407647
    233 https://doi.org/10.1007/jhep08(2018)180
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep11(2019)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122484186
    236 https://doi.org/10.1007/jhep11(2019)028
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/d41586-020-01000-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126649857
    239 https://doi.org/10.1038/d41586-020-01000-9
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1088/1126-6708/2009/05/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005924980
    242 https://doi.org/10.1088/1126-6708/2009/05/030
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1140/epjc/s10052-017-4633-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226493
    245 https://doi.org/10.1140/epjc/s10052-017-4633-z
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1140/epjc/s10052-019-7060-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117707546
    248 https://doi.org/10.1140/epjc/s10052-019-7060-5
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1140/epjc/s10052-019-7256-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120942071
    251 https://doi.org/10.1140/epjc/s10052-019-7256-8
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1140/epjc/s2003-01212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031501552
    254 https://doi.org/10.1140/epjc/s2003-01212-7
    255 rdf:type schema:CreativeWork
    256 grid-institutes:grid.450311.2 schema:alternateName Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    257 schema:name Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    258 rdf:type schema:Organization
    259 grid-institutes:grid.465082.d schema:alternateName Physical Research Laboratory, 380009, Ahmedabad, Gujarat, India
    260 schema:name Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    261 Physical Research Laboratory, 380009, Ahmedabad, Gujarat, India
    262 rdf:type schema:Organization
    263 grid-institutes:grid.7776.1 schema:alternateName Department of Mathematics, Faculty of Science, Cairo University, 12613, Giza, Egypt
    264 schema:name Department of Mathematics, Faculty of Science, Cairo University, 12613, Giza, Egypt
    265 Harish-Chandra Research Institute, HBNI, Chhatnag Road, 211019, Jhunsi, Allahabad, India
    266 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...