Elliptic blowup equations for 6d SCFTs. Part II. Exceptional cases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-04

AUTHORS

Jie Gu, Albrecht Klemm, Kaiwen Sun, Xin Wang

ABSTRACT

The building blocks of 6d (1, 0) SCFTs include certain rank one theories with gauge group G = SU(3), SO(8), F4, E6,7,8. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal HG theories. We also observe an intriguing relation between the k-string elliptic genus and the Schur indices of rank k HG SCFTs, as a generalization of Del Zotto-Lockhart’s conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters. More... »

PAGES

39

References to SciGraph publications

  • 2019-07-03. Schur correlation functions on S3 × S1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-05-29. Curve counting via stable pairs in the derived category in INVENTIONES MATHEMATICAE
  • 2015-01-15. On the elliptic genus of three E-strings and heterotic strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995-02. Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2017-05-23. Refined BPS invariants of 6d SCFTs from anomalies and modularity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-18. On exceptional instanton strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-05-30. A “Lagrangian” for the E7 superconformal theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-07. On the classification of 6D SCFTs and generalized ADE orbifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10-15. SCFT/VOA correspondence via Ω-deformation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. 6D SCFTs and phases of 5D theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-11-13. Refined stable pair invariants for E-, M- and [p, q]-strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-17. 2d index and surface operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-03-26. Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-02-13. Wild quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-14. 5d/6d DE instantons from trivalent gluing of web diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-14. Instanton counting on blowup. I. 4-dimensional pure gauge theory in INVENTIONES MATHEMATICAE
  • 2016-01-04. F-Theory, spinning black holes and multi-string branches in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997. Conformal Field Theory in NONE
  • 2015-11-04. Classification of 6d N=10 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994. Lectures on mirror symmetry in INTEGRABLE MODELS AND STRINGS
  • 2016-01-08. Schur indices, BPS particles, and Argyres-Douglas theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-18. Infrared computations of defect Schur indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05-05. Chiral algebras of class S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-08-25. F-theory on genus-one fibrations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-10-16. On elliptic genera of 6d string theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07-13. Counting exceptional instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-29. (0,4) dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-15. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-20. Elliptic genus of E-strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-02-20. BPS relations from spectral problems and blowup equations in LETTERS IN MATHEMATICAL PHYSICS
  • 2019-08-26. Chiral algebras from Ω-deformation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-22. Chiral algebras, localization and surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-08-19. M-Strings in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-11-02. Elliptic Genera of 2d N = 2 Gauge Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2019-03-14. Computing the elliptic genus of higher rank E-strings from genus 0 GW invariants in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-28. Universal features of BPS strings in six-dimensional SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-15. Infinite Chiral Symmetry in Four Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-10-26. The refined topological vertex in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-05-06. Modularity from monodromy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-03-01. Blowup equations for 6d SCFTs. Part I in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-10-30. Blowup equations for refined topological strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-27. The Refined BPS Index from Stable Pair Invariants in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-10-20. Topological string on elliptic CY 3-folds and the ring of Jacobi forms in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-15. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-03. The Ω Deformed B-model for Rigid N = 2 Theories in ANNALES HENRI POINCARÉ
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2019)039

    DOI

    http://dx.doi.org/10.1007/jhep12(2019)039

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1123215603


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "D\u00e9partement de Physique Th\u00e9orique et Section de Math\u00e9matiques, Universit\u00e9 de Ge\u01f9eve, CH-1211, Ge\u01f9eve, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.8591.5", 
              "name": [
                "D\u00e9partement de Physique Th\u00e9orique et Section de Math\u00e9matiques, Universit\u00e9 de Ge\u01f9eve, CH-1211, Ge\u01f9eve, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Jie", 
            "id": "sg:person.015224765174.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224765174.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hausdorff Center for Mathematics, Universit\u00e4t Bonn, D-53115, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.10388.32", 
              "name": [
                "Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, D-53115, Bonn, Germany", 
                "Hausdorff Center for Mathematics, Universit\u00e4t Bonn, D-53115, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klemm", 
            "givenName": "Albrecht", 
            "id": "sg:person.07535601751.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5970.b", 
              "name": [
                "Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Kaiwen", 
            "id": "sg:person.07665600535.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665600535.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461798.5", 
              "name": [
                "Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, D-53115, Bonn, Germany", 
                "Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xin", 
            "id": "sg:person.015442625007.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442625007.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2018)173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106430363", 
              "https://doi.org/10.1007/jhep08(2018)173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117764347", 
              "https://doi.org/10.1007/jhep07(2019)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038516973", 
              "https://doi.org/10.1007/jhep01(2016)009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/10/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012019814", 
              "https://doi.org/10.1088/1126-6708/2009/10/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2210-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037293419", 
              "https://doi.org/10.1007/s00220-014-2210-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2019)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112502976", 
              "https://doi.org/10.1007/jhep03(2019)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026021927", 
              "https://doi.org/10.1007/jhep11(2016)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623483", 
              "https://doi.org/10.1007/jhep05(2014)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-019-01163-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112262043", 
              "https://doi.org/10.1007/s11005-019-01163-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006742760", 
              "https://doi.org/10.1007/bf02100589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003019049", 
              "https://doi.org/10.1007/jhep01(2016)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58453-6_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048422149", 
              "https://doi.org/10.1007/3-540-58453-6_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033207786", 
              "https://doi.org/10.1007/jhep01(2015)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2019)143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120630807", 
              "https://doi.org/10.1007/jhep08(2019)143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101216439", 
              "https://doi.org/10.1007/jhep02(2018)138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2139-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034199026", 
              "https://doi.org/10.1007/s00220-014-2139-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043235881", 
              "https://doi.org/10.1007/jhep10(2015)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036285701", 
              "https://doi.org/10.1007/jhep01(2013)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026674106", 
              "https://doi.org/10.1007/jhep05(2015)020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048280868", 
              "https://doi.org/10.1007/jhep07(2012)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-2256-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016316421", 
              "https://doi.org/10.1007/978-1-4612-2256-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008636328", 
              "https://doi.org/10.1007/s00220-014-2272-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2017)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085575467", 
              "https://doi.org/10.1007/jhep05(2017)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024279031", 
              "https://doi.org/10.1007/jhep03(2016)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091834557", 
              "https://doi.org/10.1007/jhep09(2017)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028765881", 
              "https://doi.org/10.1007/jhep03(2014)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2018)156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101774873", 
              "https://doi.org/10.1007/jhep03(2018)156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020776157", 
              "https://doi.org/10.1007/jhep11(2015)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035823476", 
              "https://doi.org/10.1007/jhep11(2013)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2014)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023564117", 
              "https://doi.org/10.1007/jhep08(2014)132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2017)078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086030169", 
              "https://doi.org/10.1007/jhep06(2017)078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091892889", 
              "https://doi.org/10.1007/jhep09(2017)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-009-0203-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002043169", 
              "https://doi.org/10.1007/s00222-009-0203-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2018)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107682684", 
              "https://doi.org/10.1007/jhep10(2018)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001081567", 
              "https://doi.org/10.1007/jhep02(2012)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-1978-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038692314", 
              "https://doi.org/10.1007/s00220-014-1978-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113945116", 
              "https://doi.org/10.1007/jhep05(2019)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-005-0444-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046597097", 
              "https://doi.org/10.1007/s00222-005-0444-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091999542", 
              "https://doi.org/10.1007/jhep09(2017)147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-012-0192-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024875783", 
              "https://doi.org/10.1007/s00023-012-0192-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2018)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104332448", 
              "https://doi.org/10.1007/jhep05(2018)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2019)171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121951040", 
              "https://doi.org/10.1007/jhep10(2019)171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2019)078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112772936", 
              "https://doi.org/10.1007/jhep03(2019)078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2018)196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107967119", 
              "https://doi.org/10.1007/jhep10(2018)196"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12-04", 
        "datePublishedReg": "2019-12-04", 
        "description": "The building blocks of 6d (1, 0) SCFTs include certain rank one theories with gauge group G = SU(3), SO(8), F4, E6,7,8. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 superconformal HG theories. We also observe an intriguing relation between the k-string elliptic genus and the Schur indices of rank k HG SCFTs, as a generalization of Del Zotto-Lockhart\u2019s conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep12(2019)039", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "elliptic genus", 
          "blowup equations", 
          "non-Higgsable clusters", 
          "topological string theory", 
          "rank one case", 
          "gauge group G", 
          "BPS invariants", 
          "modular bootstrap", 
          "string theory", 
          "Schur index", 
          "Hilbert series", 
          "one theory", 
          "recursion formula", 
          "group G", 
          "intriguing relation", 
          "SCFTs", 
          "such theories", 
          "equations", 
          "subsequent paper", 
          "theory", 
          "conjecture", 
          "previous paper", 
          "previous results", 
          "formula", 
          "quivers", 
          "invariants", 
          "bootstrap", 
          "generalization", 
          "exceptional cases", 
          "one case", 
          "cases", 
          "clusters", 
          "building blocks", 
          "results", 
          "relation", 
          "series", 
          "matter", 
          "block", 
          "F4", 
          "index", 
          "genus", 
          "paper"
        ], 
        "name": "Elliptic blowup equations for 6d SCFTs. Part II. Exceptional cases", 
        "pagination": "39", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1123215603"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2019)039"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2019)039", 
          "https://app.dimensions.ai/details/publication/pub.1123215603"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_797.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep12(2019)039"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'


     

    This table displays all metadata directly associated to this object as RDF triples.

    352 TRIPLES      22 PREDICATES      122 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2019)039 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb66670cd18ea4f8b8a0e7a0616da8cff
    4 schema:citation sg:pub.10.1007/3-540-58453-6_13
    5 sg:pub.10.1007/978-1-4612-2256-9
    6 sg:pub.10.1007/bf02100589
    7 sg:pub.10.1007/jhep01(2013)070
    8 sg:pub.10.1007/jhep01(2013)100
    9 sg:pub.10.1007/jhep01(2015)079
    10 sg:pub.10.1007/jhep01(2016)009
    11 sg:pub.10.1007/jhep01(2016)040
    12 sg:pub.10.1007/jhep02(2012)031
    13 sg:pub.10.1007/jhep02(2018)138
    14 sg:pub.10.1007/jhep03(2012)045
    15 sg:pub.10.1007/jhep03(2014)080
    16 sg:pub.10.1007/jhep03(2016)185
    17 sg:pub.10.1007/jhep03(2018)156
    18 sg:pub.10.1007/jhep03(2019)002
    19 sg:pub.10.1007/jhep03(2019)078
    20 sg:pub.10.1007/jhep05(2012)145
    21 sg:pub.10.1007/jhep05(2014)028
    22 sg:pub.10.1007/jhep05(2015)020
    23 sg:pub.10.1007/jhep05(2017)130
    24 sg:pub.10.1007/jhep05(2018)193
    25 sg:pub.10.1007/jhep05(2019)024
    26 sg:pub.10.1007/jhep06(2010)100
    27 sg:pub.10.1007/jhep06(2017)078
    28 sg:pub.10.1007/jhep07(2012)085
    29 sg:pub.10.1007/jhep07(2019)013
    30 sg:pub.10.1007/jhep08(2010)107
    31 sg:pub.10.1007/jhep08(2014)132
    32 sg:pub.10.1007/jhep08(2018)173
    33 sg:pub.10.1007/jhep08(2019)143
    34 sg:pub.10.1007/jhep09(2017)081
    35 sg:pub.10.1007/jhep09(2017)098
    36 sg:pub.10.1007/jhep09(2017)147
    37 sg:pub.10.1007/jhep10(2014)152
    38 sg:pub.10.1007/jhep10(2015)125
    39 sg:pub.10.1007/jhep10(2018)100
    40 sg:pub.10.1007/jhep10(2018)196
    41 sg:pub.10.1007/jhep10(2019)171
    42 sg:pub.10.1007/jhep11(2013)112
    43 sg:pub.10.1007/jhep11(2015)002
    44 sg:pub.10.1007/jhep11(2016)106
    45 sg:pub.10.1007/jhep12(2014)103
    46 sg:pub.10.1007/s00023-012-0192-x
    47 sg:pub.10.1007/s00220-007-0258-7
    48 sg:pub.10.1007/s00220-012-1607-8
    49 sg:pub.10.1007/s00220-014-1978-0
    50 sg:pub.10.1007/s00220-014-2139-1
    51 sg:pub.10.1007/s00220-014-2210-y
    52 sg:pub.10.1007/s00220-014-2272-x
    53 sg:pub.10.1007/s00222-005-0444-1
    54 sg:pub.10.1007/s00222-009-0203-9
    55 sg:pub.10.1007/s11005-019-01163-1
    56 sg:pub.10.1088/1126-6708/2007/12/088
    57 sg:pub.10.1088/1126-6708/2009/09/052
    58 sg:pub.10.1088/1126-6708/2009/10/069
    59 schema:datePublished 2019-12-04
    60 schema:datePublishedReg 2019-12-04
    61 schema:description The building blocks of 6d (1, 0) SCFTs include certain rank one theories with gauge group G = SU(3), SO(8), F4, E6,7,8. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal HG theories. We also observe an intriguing relation between the k-string elliptic genus and the Schur indices of rank k HG SCFTs, as a generalization of Del Zotto-Lockhart’s conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters.
    62 schema:genre article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N5ebd33641b224c95acded795cf918360
    66 Nfe8808aa255f427bbb508de2f3822b0f
    67 sg:journal.1052482
    68 schema:keywords BPS invariants
    69 F4
    70 Hilbert series
    71 SCFTs
    72 Schur index
    73 block
    74 blowup equations
    75 bootstrap
    76 building blocks
    77 cases
    78 clusters
    79 conjecture
    80 elliptic genus
    81 equations
    82 exceptional cases
    83 formula
    84 gauge group G
    85 generalization
    86 genus
    87 group G
    88 index
    89 intriguing relation
    90 invariants
    91 matter
    92 modular bootstrap
    93 non-Higgsable clusters
    94 one case
    95 one theory
    96 paper
    97 previous paper
    98 previous results
    99 quivers
    100 rank one case
    101 recursion formula
    102 relation
    103 results
    104 series
    105 string theory
    106 subsequent paper
    107 such theories
    108 theory
    109 topological string theory
    110 schema:name Elliptic blowup equations for 6d SCFTs. Part II. Exceptional cases
    111 schema:pagination 39
    112 schema:productId Ne0f936813385470ea3d3534c50e34287
    113 Nfee7a2108bbf457f8e75ffbf28296f24
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123215603
    115 https://doi.org/10.1007/jhep12(2019)039
    116 schema:sdDatePublished 2022-05-20T07:35
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N7d9698a00e1643d587e765546fc97a69
    119 schema:url https://doi.org/10.1007/jhep12(2019)039
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N1235f9e4717d4ea0af82705e323985cb rdf:first sg:person.07535601751.07
    124 rdf:rest Nd99187efa29e4fe78b55e65ea7e3b691
    125 N5ebd33641b224c95acded795cf918360 schema:volumeNumber 2019
    126 rdf:type schema:PublicationVolume
    127 N7d9698a00e1643d587e765546fc97a69 schema:name Springer Nature - SN SciGraph project
    128 rdf:type schema:Organization
    129 Nb66670cd18ea4f8b8a0e7a0616da8cff rdf:first sg:person.015224765174.64
    130 rdf:rest N1235f9e4717d4ea0af82705e323985cb
    131 Nccbaaca4974d49edb21d7fe496f42426 rdf:first sg:person.015442625007.27
    132 rdf:rest rdf:nil
    133 Nd99187efa29e4fe78b55e65ea7e3b691 rdf:first sg:person.07665600535.21
    134 rdf:rest Nccbaaca4974d49edb21d7fe496f42426
    135 Ne0f936813385470ea3d3534c50e34287 schema:name dimensions_id
    136 schema:value pub.1123215603
    137 rdf:type schema:PropertyValue
    138 Nfe8808aa255f427bbb508de2f3822b0f schema:issueNumber 12
    139 rdf:type schema:PublicationIssue
    140 Nfee7a2108bbf457f8e75ffbf28296f24 schema:name doi
    141 schema:value 10.1007/jhep12(2019)039
    142 rdf:type schema:PropertyValue
    143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Mathematical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Pure Mathematics
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1052482 schema:issn 1029-8479
    150 1126-6708
    151 schema:name Journal of High Energy Physics
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.015224765174.64 schema:affiliation grid-institutes:grid.8591.5
    155 schema:familyName Gu
    156 schema:givenName Jie
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224765174.64
    158 rdf:type schema:Person
    159 sg:person.015442625007.27 schema:affiliation grid-institutes:grid.461798.5
    160 schema:familyName Wang
    161 schema:givenName Xin
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442625007.27
    163 rdf:type schema:Person
    164 sg:person.07535601751.07 schema:affiliation grid-institutes:grid.10388.32
    165 schema:familyName Klemm
    166 schema:givenName Albrecht
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07
    168 rdf:type schema:Person
    169 sg:person.07665600535.21 schema:affiliation grid-institutes:grid.5970.b
    170 schema:familyName Sun
    171 schema:givenName Kaiwen
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665600535.21
    173 rdf:type schema:Person
    174 sg:pub.10.1007/3-540-58453-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048422149
    175 https://doi.org/10.1007/3-540-58453-6_13
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-1-4612-2256-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016316421
    178 https://doi.org/10.1007/978-1-4612-2256-9
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf02100589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006742760
    181 https://doi.org/10.1007/bf02100589
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    184 https://doi.org/10.1007/jhep01(2013)070
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
    187 https://doi.org/10.1007/jhep01(2013)100
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep01(2015)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033207786
    190 https://doi.org/10.1007/jhep01(2015)079
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/jhep01(2016)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038516973
    193 https://doi.org/10.1007/jhep01(2016)009
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/jhep01(2016)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003019049
    196 https://doi.org/10.1007/jhep01(2016)040
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/jhep02(2012)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081567
    199 https://doi.org/10.1007/jhep02(2012)031
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/jhep02(2018)138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101216439
    202 https://doi.org/10.1007/jhep02(2018)138
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    205 https://doi.org/10.1007/jhep03(2012)045
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/jhep03(2014)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028765881
    208 https://doi.org/10.1007/jhep03(2014)080
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/jhep03(2016)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024279031
    211 https://doi.org/10.1007/jhep03(2016)185
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/jhep03(2018)156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101774873
    214 https://doi.org/10.1007/jhep03(2018)156
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/jhep03(2019)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112502976
    217 https://doi.org/10.1007/jhep03(2019)002
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/jhep03(2019)078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112772936
    220 https://doi.org/10.1007/jhep03(2019)078
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    223 https://doi.org/10.1007/jhep05(2012)145
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/jhep05(2014)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623483
    226 https://doi.org/10.1007/jhep05(2014)028
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/jhep05(2015)020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026674106
    229 https://doi.org/10.1007/jhep05(2015)020
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/jhep05(2017)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085575467
    232 https://doi.org/10.1007/jhep05(2017)130
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/jhep05(2018)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104332448
    235 https://doi.org/10.1007/jhep05(2018)193
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/jhep05(2019)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113945116
    238 https://doi.org/10.1007/jhep05(2019)024
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    241 https://doi.org/10.1007/jhep06(2010)100
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/jhep06(2017)078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086030169
    244 https://doi.org/10.1007/jhep06(2017)078
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/jhep07(2012)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048280868
    247 https://doi.org/10.1007/jhep07(2012)085
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/jhep07(2019)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117764347
    250 https://doi.org/10.1007/jhep07(2019)013
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    253 https://doi.org/10.1007/jhep08(2010)107
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/jhep08(2014)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023564117
    256 https://doi.org/10.1007/jhep08(2014)132
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/jhep08(2018)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106430363
    259 https://doi.org/10.1007/jhep08(2018)173
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/jhep08(2019)143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120630807
    262 https://doi.org/10.1007/jhep08(2019)143
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/jhep09(2017)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091834557
    265 https://doi.org/10.1007/jhep09(2017)081
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/jhep09(2017)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091892889
    268 https://doi.org/10.1007/jhep09(2017)098
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/jhep09(2017)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091999542
    271 https://doi.org/10.1007/jhep09(2017)147
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    274 https://doi.org/10.1007/jhep10(2014)152
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/jhep10(2015)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043235881
    277 https://doi.org/10.1007/jhep10(2015)125
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/jhep10(2018)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107682684
    280 https://doi.org/10.1007/jhep10(2018)100
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/jhep10(2018)196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107967119
    283 https://doi.org/10.1007/jhep10(2018)196
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/jhep10(2019)171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121951040
    286 https://doi.org/10.1007/jhep10(2019)171
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/jhep11(2013)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035823476
    289 https://doi.org/10.1007/jhep11(2013)112
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/jhep11(2015)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020776157
    292 https://doi.org/10.1007/jhep11(2015)002
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/jhep11(2016)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026021927
    295 https://doi.org/10.1007/jhep11(2016)106
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    298 https://doi.org/10.1007/jhep12(2014)103
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s00023-012-0192-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024875783
    301 https://doi.org/10.1007/s00023-012-0192-x
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    304 https://doi.org/10.1007/s00220-007-0258-7
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    307 https://doi.org/10.1007/s00220-012-1607-8
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00220-014-1978-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038692314
    310 https://doi.org/10.1007/s00220-014-1978-0
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00220-014-2139-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034199026
    313 https://doi.org/10.1007/s00220-014-2139-1
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s00220-014-2210-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037293419
    316 https://doi.org/10.1007/s00220-014-2210-y
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s00220-014-2272-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008636328
    319 https://doi.org/10.1007/s00220-014-2272-x
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s00222-005-0444-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046597097
    322 https://doi.org/10.1007/s00222-005-0444-1
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s00222-009-0203-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002043169
    325 https://doi.org/10.1007/s00222-009-0203-9
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1007/s11005-019-01163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262043
    328 https://doi.org/10.1007/s11005-019-01163-1
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    331 https://doi.org/10.1088/1126-6708/2007/12/088
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    334 https://doi.org/10.1088/1126-6708/2009/09/052
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1088/1126-6708/2009/10/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019814
    337 https://doi.org/10.1088/1126-6708/2009/10/069
    338 rdf:type schema:CreativeWork
    339 grid-institutes:grid.10388.32 schema:alternateName Hausdorff Center for Mathematics, Universität Bonn, D-53115, Bonn, Germany
    340 schema:name Bethe Center for Theoretical Physics, Universität Bonn, D-53115, Bonn, Germany
    341 Hausdorff Center for Mathematics, Universität Bonn, D-53115, Bonn, Germany
    342 rdf:type schema:Organization
    343 grid-institutes:grid.461798.5 schema:alternateName Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany
    344 schema:name Bethe Center for Theoretical Physics, Universität Bonn, D-53115, Bonn, Germany
    345 Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany
    346 rdf:type schema:Organization
    347 grid-institutes:grid.5970.b schema:alternateName Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy
    348 schema:name Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy
    349 rdf:type schema:Organization
    350 grid-institutes:grid.8591.5 schema:alternateName Département de Physique Théorique et Section de Mathématiques, Université de Geǹeve, CH-1211, Geǹeve, Switzerland
    351 schema:name Département de Physique Théorique et Section de Mathématiques, Université de Geǹeve, CH-1211, Geǹeve, Switzerland
    352 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...