Ontology type: schema:ScholarlyArticle Open Access: True
2019-12-04
AUTHORSJie Gu, Albrecht Klemm, Kaiwen Sun, Xin Wang
ABSTRACTThe building blocks of 6d (1, 0) SCFTs include certain rank one theories with gauge group G = SU(3), SO(8), F4, E6,7,8. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal HG theories. We also observe an intriguing relation between the k-string elliptic genus and the Schur indices of rank k HG SCFTs, as a generalization of Del Zotto-Lockhart’s conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters. More... »
PAGES39
http://scigraph.springernature.com/pub.10.1007/jhep12(2019)039
DOIhttp://dx.doi.org/10.1007/jhep12(2019)039
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1123215603
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "D\u00e9partement de Physique Th\u00e9orique et Section de Math\u00e9matiques, Universit\u00e9 de Ge\u01f9eve, CH-1211, Ge\u01f9eve, Switzerland",
"id": "http://www.grid.ac/institutes/grid.8591.5",
"name": [
"D\u00e9partement de Physique Th\u00e9orique et Section de Math\u00e9matiques, Universit\u00e9 de Ge\u01f9eve, CH-1211, Ge\u01f9eve, Switzerland"
],
"type": "Organization"
},
"familyName": "Gu",
"givenName": "Jie",
"id": "sg:person.015224765174.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224765174.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hausdorff Center for Mathematics, Universit\u00e4t Bonn, D-53115, Bonn, Germany",
"id": "http://www.grid.ac/institutes/grid.10388.32",
"name": [
"Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, D-53115, Bonn, Germany",
"Hausdorff Center for Mathematics, Universit\u00e4t Bonn, D-53115, Bonn, Germany"
],
"type": "Organization"
},
"familyName": "Klemm",
"givenName": "Albrecht",
"id": "sg:person.07535601751.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.5970.b",
"name": [
"Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Sun",
"givenName": "Kaiwen",
"id": "sg:person.07665600535.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665600535.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany",
"id": "http://www.grid.ac/institutes/grid.461798.5",
"name": [
"Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, D-53115, Bonn, Germany",
"Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111, Bonn, Germany"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Xin",
"id": "sg:person.015442625007.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442625007.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep08(2018)173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106430363",
"https://doi.org/10.1007/jhep08(2018)173"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2019)013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117764347",
"https://doi.org/10.1007/jhep07(2019)013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2016)009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038516973",
"https://doi.org/10.1007/jhep01(2016)009"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/10/069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012019814",
"https://doi.org/10.1088/1126-6708/2009/10/069"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2210-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037293419",
"https://doi.org/10.1007/s00220-014-2210-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2019)002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112502976",
"https://doi.org/10.1007/jhep03(2019)002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2016)106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026021927",
"https://doi.org/10.1007/jhep11(2016)106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2014)028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016623483",
"https://doi.org/10.1007/jhep05(2014)028"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2012)045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025450706",
"https://doi.org/10.1007/jhep03(2012)045"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-019-01163-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112262043",
"https://doi.org/10.1007/s11005-019-01163-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02100589",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006742760",
"https://doi.org/10.1007/bf02100589"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2016)040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003019049",
"https://doi.org/10.1007/jhep01(2016)040"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-58453-6_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048422149",
"https://doi.org/10.1007/3-540-58453-6_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2015)079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033207786",
"https://doi.org/10.1007/jhep01(2015)079"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2019)143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120630807",
"https://doi.org/10.1007/jhep08(2019)143"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0258-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040519445",
"https://doi.org/10.1007/s00220-007-0258-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)070",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046707518",
"https://doi.org/10.1007/jhep01(2013)070"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2018)138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101216439",
"https://doi.org/10.1007/jhep02(2018)138"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2010)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039820025",
"https://doi.org/10.1007/jhep06(2010)100"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2139-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034199026",
"https://doi.org/10.1007/s00220-014-2139-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2015)125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043235881",
"https://doi.org/10.1007/jhep10(2015)125"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036285701",
"https://doi.org/10.1007/jhep01(2013)100"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2012)145",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042516890",
"https://doi.org/10.1007/jhep05(2012)145"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2015)020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026674106",
"https://doi.org/10.1007/jhep05(2015)020"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2012)085",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048280868",
"https://doi.org/10.1007/jhep07(2012)085"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2014)152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011840461",
"https://doi.org/10.1007/jhep10(2014)152"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2014)103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036891425",
"https://doi.org/10.1007/jhep12(2014)103"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-2256-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016316421",
"https://doi.org/10.1007/978-1-4612-2256-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2272-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008636328",
"https://doi.org/10.1007/s00220-014-2272-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-012-1607-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049095812",
"https://doi.org/10.1007/s00220-012-1607-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/09/052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004902104",
"https://doi.org/10.1088/1126-6708/2009/09/052"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2017)130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085575467",
"https://doi.org/10.1007/jhep05(2017)130"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2016)185",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024279031",
"https://doi.org/10.1007/jhep03(2016)185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2017)081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091834557",
"https://doi.org/10.1007/jhep09(2017)081"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2014)080",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028765881",
"https://doi.org/10.1007/jhep03(2014)080"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2018)156",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101774873",
"https://doi.org/10.1007/jhep03(2018)156"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2015)002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020776157",
"https://doi.org/10.1007/jhep11(2015)002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2013)112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035823476",
"https://doi.org/10.1007/jhep11(2013)112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2014)132",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023564117",
"https://doi.org/10.1007/jhep08(2014)132"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2017)078",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086030169",
"https://doi.org/10.1007/jhep06(2017)078"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2017)098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091892889",
"https://doi.org/10.1007/jhep09(2017)098"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-009-0203-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002043169",
"https://doi.org/10.1007/s00222-009-0203-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2018)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107682684",
"https://doi.org/10.1007/jhep10(2018)100"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2012)031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001081567",
"https://doi.org/10.1007/jhep02(2012)031"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-1978-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038692314",
"https://doi.org/10.1007/s00220-014-1978-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2019)024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113945116",
"https://doi.org/10.1007/jhep05(2019)024"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-005-0444-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046597097",
"https://doi.org/10.1007/s00222-005-0444-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/12/088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051078287",
"https://doi.org/10.1088/1126-6708/2007/12/088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2017)147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091999542",
"https://doi.org/10.1007/jhep09(2017)147"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00023-012-0192-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024875783",
"https://doi.org/10.1007/s00023-012-0192-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2018)193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104332448",
"https://doi.org/10.1007/jhep05(2018)193"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2019)171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121951040",
"https://doi.org/10.1007/jhep10(2019)171"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2010)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033814222",
"https://doi.org/10.1007/jhep08(2010)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2019)078",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112772936",
"https://doi.org/10.1007/jhep03(2019)078"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2018)196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107967119",
"https://doi.org/10.1007/jhep10(2018)196"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12-04",
"datePublishedReg": "2019-12-04",
"description": "The building blocks of 6d (1, 0) SCFTs include certain rank one theories with gauge group G = SU(3), SO(8), F4, E6,7,8. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 superconformal HG theories. We also observe an intriguing relation between the k-string elliptic genus and the Schur indices of rank k HG SCFTs, as a generalization of Del Zotto-Lockhart\u2019s conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters.",
"genre": "article",
"id": "sg:pub.10.1007/jhep12(2019)039",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2019"
}
],
"keywords": [
"elliptic genus",
"blowup equations",
"non-Higgsable clusters",
"topological string theory",
"rank one case",
"gauge group G",
"BPS invariants",
"modular bootstrap",
"string theory",
"Schur index",
"Hilbert series",
"one theory",
"recursion formula",
"group G",
"intriguing relation",
"SCFTs",
"such theories",
"equations",
"subsequent paper",
"theory",
"conjecture",
"previous paper",
"previous results",
"formula",
"quivers",
"invariants",
"bootstrap",
"generalization",
"exceptional cases",
"one case",
"cases",
"clusters",
"building blocks",
"results",
"relation",
"series",
"matter",
"block",
"F4",
"index",
"genus",
"paper"
],
"name": "Elliptic blowup equations for 6d SCFTs. Part II. Exceptional cases",
"pagination": "39",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1123215603"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep12(2019)039"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep12(2019)039",
"https://app.dimensions.ai/details/publication/pub.1123215603"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_797.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep12(2019)039"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2019)039'
This table displays all metadata directly associated to this object as RDF triples.
352 TRIPLES
22 PREDICATES
122 URIs
59 LITERALS
6 BLANK NODES