Bulk-boundary correspondence between charged, anyonic strings and vortices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Alexander Gußmann, Debajyoti Sarkar, Nico Wintergerst

ABSTRACT

We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality. More... »

PAGES

93

References to SciGraph publications

  • 2014-04. Vortices in holographic superfluids and superconductors as conformal defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-29. Effective theory of the quantum Hall effect in AdS/CFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 1989-06. Quantum field theories of vortices and anyons in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-10. Chern-Simons vortices and holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08. Emergent gauge fields in holographic superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2018)093

    DOI

    http://dx.doi.org/10.1007/jhep12(2018)093

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110711624


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universit\u00e4t, Theresienstr. 37, 80333, M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu\u00dfmann", 
            "givenName": "Alexander", 
            "id": "sg:person.012146221161.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146221161.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bern", 
              "id": "https://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarkar", 
            "givenName": "Debajyoti", 
            "id": "sg:person.010056233065.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056233065.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wintergerst", 
            "givenName": "Nico", 
            "id": "sg:person.012337662607.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337662607.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0550-3213(02)00024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004487325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.105008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010899121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.105008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010899121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(93)91516-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013819027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(93)91516-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013819027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91028-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015496181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91028-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015496181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015652315", 
              "https://doi.org/10.1007/bf01217803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015967217", 
              "https://doi.org/10.1007/jhep04(2014)096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90008-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016691028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90008-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016691028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)00503-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016777738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(73)90350-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022043331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(73)90350-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022043331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023750590", 
              "https://doi.org/10.1007/jhep10(2014)018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023750590", 
              "https://doi.org/10.1007/jhep10(2014)018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/77/47005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026006231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.49.2041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026510372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.49.2041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026510372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.111601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037417156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.111601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037417156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90022-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038476281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90022-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038476281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(90)90262-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039597069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(90)90262-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039597069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.091601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040124381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.091601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040124381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.031601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045045143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.031601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045045143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046491104", 
              "https://doi.org/10.1007/jhep08(2010)033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047266435", 
              "https://doi.org/10.1088/1126-6708/2008/09/130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(79)90838-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047966837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(79)90838-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047966837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90252-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048010296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90252-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048010296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.181601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048537847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.181601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048537847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.58.716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060451361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.58.716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060451361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.2227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.2227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.167002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.167002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.49.957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.49.957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.51.2250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.51.2250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.2564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.2564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217732389000046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062917448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217732392003220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062918847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x91001210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062929223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/aspm/01710289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105017851"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep12(2018)093", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Bulk-boundary correspondence between charged, anyonic strings and vortices", 
        "pagination": "93", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77e1c9cb233de9307af701211e674ca44a37a492a457c2c139cae3b2a63339ae"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2018)093"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110711624"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2018)093", 
          "https://app.dimensions.ai/details/publication/pub.1110711624"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000297_0000000297/records_20186_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP12%282018%29093"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2018)093 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3a344ba3b12d47968ea957b5db0bc4f7
    4 schema:citation sg:pub.10.1007/bf01217803
    5 sg:pub.10.1007/jhep04(2014)096
    6 sg:pub.10.1007/jhep08(2010)033
    7 sg:pub.10.1007/jhep10(2014)018
    8 sg:pub.10.1088/1126-6708/2008/09/130
    9 https://doi.org/10.1016/0370-2693(79)90838-4
    10 https://doi.org/10.1016/0370-2693(86)91028-2
    11 https://doi.org/10.1016/0370-2693(93)91516-p
    12 https://doi.org/10.1016/0550-3213(73)90350-7
    13 https://doi.org/10.1016/0550-3213(85)90022-7
    14 https://doi.org/10.1016/0550-3213(85)90252-4
    15 https://doi.org/10.1016/0550-3213(90)90262-c
    16 https://doi.org/10.1016/0550-3213(92)90008-y
    17 https://doi.org/10.1016/0550-3213(94)00503-7
    18 https://doi.org/10.1016/s0550-3213(02)00024-x
    19 https://doi.org/10.1103/physrev.58.716
    20 https://doi.org/10.1103/physrevd.11.2227
    21 https://doi.org/10.1103/physrevd.20.439
    22 https://doi.org/10.1103/physrevd.49.2041
    23 https://doi.org/10.1103/physrevd.90.105008
    24 https://doi.org/10.1103/physrevlett.101.031601
    25 https://doi.org/10.1103/physrevlett.103.091601
    26 https://doi.org/10.1103/physrevlett.107.181601
    27 https://doi.org/10.1103/physrevlett.117.167002
    28 https://doi.org/10.1103/physrevlett.49.957
    29 https://doi.org/10.1103/physrevlett.51.2250
    30 https://doi.org/10.1103/physrevlett.56.2564
    31 https://doi.org/10.1103/physrevlett.62.1221
    32 https://doi.org/10.1103/physrevlett.62.1937
    33 https://doi.org/10.1103/physrevlett.98.111601
    34 https://doi.org/10.1142/s0217732389000046
    35 https://doi.org/10.1142/s0217732392003220
    36 https://doi.org/10.1142/s0217751x91001210
    37 https://doi.org/10.1209/0295-5075/77/47005
    38 https://doi.org/10.2969/aspm/01710289
    39 schema:datePublished 2018-12
    40 schema:datePublishedReg 2018-12-01
    41 schema:description We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N491533571d024c3d8c2b7aaff50a8d76
    46 Nd60b210812be4dbfa5e457d44bb3d7c1
    47 sg:journal.1052482
    48 schema:name Bulk-boundary correspondence between charged, anyonic strings and vortices
    49 schema:pagination 93
    50 schema:productId N099e9c9c4ee44932823020ffcdd384e3
    51 N3bef5820d5c543118e65f5eb9b65b61b
    52 N7aca5baf6e4848989f69285dc4705f9d
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110711624
    54 https://doi.org/10.1007/jhep12(2018)093
    55 schema:sdDatePublished 2019-04-11T08:24
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nd27891e8ecc341f9b57908bcbc9d1159
    58 schema:url https://link.springer.com/10.1007%2FJHEP12%282018%29093
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N099e9c9c4ee44932823020ffcdd384e3 schema:name readcube_id
    63 schema:value 77e1c9cb233de9307af701211e674ca44a37a492a457c2c139cae3b2a63339ae
    64 rdf:type schema:PropertyValue
    65 N3a344ba3b12d47968ea957b5db0bc4f7 rdf:first sg:person.012146221161.90
    66 rdf:rest N5e359d640b594710b3582d93a5fa0aac
    67 N3bef5820d5c543118e65f5eb9b65b61b schema:name dimensions_id
    68 schema:value pub.1110711624
    69 rdf:type schema:PropertyValue
    70 N491533571d024c3d8c2b7aaff50a8d76 schema:volumeNumber 2018
    71 rdf:type schema:PublicationVolume
    72 N5e359d640b594710b3582d93a5fa0aac rdf:first sg:person.010056233065.85
    73 rdf:rest Nf2eb0b761bab4f51af9fcbc65377c467
    74 N7aca5baf6e4848989f69285dc4705f9d schema:name doi
    75 schema:value 10.1007/jhep12(2018)093
    76 rdf:type schema:PropertyValue
    77 Nd27891e8ecc341f9b57908bcbc9d1159 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 Nd60b210812be4dbfa5e457d44bb3d7c1 schema:issueNumber 12
    80 rdf:type schema:PublicationIssue
    81 Nf2eb0b761bab4f51af9fcbc65377c467 rdf:first sg:person.012337662607.36
    82 rdf:rest rdf:nil
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Pure Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1052482 schema:issn 1029-8479
    90 1126-6708
    91 schema:name Journal of High Energy Physics
    92 rdf:type schema:Periodical
    93 sg:person.010056233065.85 schema:affiliation https://www.grid.ac/institutes/grid.5734.5
    94 schema:familyName Sarkar
    95 schema:givenName Debajyoti
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056233065.85
    97 rdf:type schema:Person
    98 sg:person.012146221161.90 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    99 schema:familyName Gußmann
    100 schema:givenName Alexander
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146221161.90
    102 rdf:type schema:Person
    103 sg:person.012337662607.36 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    104 schema:familyName Wintergerst
    105 schema:givenName Nico
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337662607.36
    107 rdf:type schema:Person
    108 sg:pub.10.1007/bf01217803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015652315
    109 https://doi.org/10.1007/bf01217803
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep04(2014)096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015967217
    112 https://doi.org/10.1007/jhep04(2014)096
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep08(2010)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491104
    115 https://doi.org/10.1007/jhep08(2010)033
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep10(2014)018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750590
    118 https://doi.org/10.1007/jhep10(2014)018
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1088/1126-6708/2008/09/130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047266435
    121 https://doi.org/10.1088/1126-6708/2008/09/130
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0370-2693(79)90838-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047966837
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0370-2693(86)91028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015496181
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0370-2693(93)91516-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1013819027
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0550-3213(73)90350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022043331
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0550-3213(85)90022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038476281
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0550-3213(85)90252-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048010296
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/0550-3213(90)90262-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1039597069
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/0550-3213(92)90008-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016691028
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0550-3213(94)00503-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016777738
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/s0550-3213(02)00024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004487325
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrev.58.716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451361
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevd.11.2227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682942
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevd.20.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687650
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevd.49.2041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026510372
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevd.90.105008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010899121
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.101.031601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045143
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevlett.103.091601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040124381
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevlett.107.181601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537847
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevlett.117.167002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766560
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.49.957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788111
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevlett.51.2250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789351
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.56.2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793318
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.62.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798421
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevlett.62.1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798649
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevlett.98.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037417156
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1142/s0217732389000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062917448
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1142/s0217732392003220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918847
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1142/s0217751x91001210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062929223
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1209/0295-5075/77/47005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026006231
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.2969/aspm/01710289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105017851
    182 rdf:type schema:CreativeWork
    183 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    184 schema:name Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstr. 37, 80333, München, Germany
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    187 schema:name The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen Ø, Denmark
    188 rdf:type schema:Organization
    189 https://www.grid.ac/institutes/grid.5734.5 schema:alternateName University of Bern
    190 schema:name Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...