Bulk-boundary correspondence between charged, anyonic strings and vortices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Alexander Gußmann, Debajyoti Sarkar, Nico Wintergerst

ABSTRACT

We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality. More... »

PAGES

93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep12(2018)093

DOI

http://dx.doi.org/10.1007/jhep12(2018)093

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110711624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universit\u00e4t, Theresienstr. 37, 80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu\u00dfmann", 
        "givenName": "Alexander", 
        "id": "sg:person.012146221161.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146221161.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bern", 
          "id": "https://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkar", 
        "givenName": "Debajyoti", 
        "id": "sg:person.010056233065.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056233065.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wintergerst", 
        "givenName": "Nico", 
        "id": "sg:person.012337662607.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337662607.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(02)00024-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004487325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.105008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010899121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.105008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010899121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)91516-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013819027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)91516-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013819027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(86)91028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015496181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(86)91028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015496181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01217803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015652315", 
          "https://doi.org/10.1007/bf01217803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2014)096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015967217", 
          "https://doi.org/10.1007/jhep04(2014)096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90008-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016691028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(92)90008-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016691028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)00503-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016777738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(73)90350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022043331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(73)90350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022043331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023750590", 
          "https://doi.org/10.1007/jhep10(2014)018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023750590", 
          "https://doi.org/10.1007/jhep10(2014)018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/77/47005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026006231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.2041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026510372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.2041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026510372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037417156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037417156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038476281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038476281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90262-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039597069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90262-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039597069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.091601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040124381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.091601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040124381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.031601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045045143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.031601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045045143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2010)033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046491104", 
          "https://doi.org/10.1007/jhep08(2010)033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/09/130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047266435", 
          "https://doi.org/10.1088/1126-6708/2008/09/130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(79)90838-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047966837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(79)90838-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047966837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90252-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048010296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90252-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048010296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.181601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048537847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.181601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048537847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.58.716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.58.716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.11.2227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060682942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.11.2227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060682942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.20.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.20.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.167002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.167002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732389000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062917448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392003220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x91001210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062929223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/aspm/01710289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105017851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep12(2018)093", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Bulk-boundary correspondence between charged, anyonic strings and vortices", 
    "pagination": "93", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77e1c9cb233de9307af701211e674ca44a37a492a457c2c139cae3b2a63339ae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep12(2018)093"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110711624"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep12(2018)093", 
      "https://app.dimensions.ai/details/publication/pub.1110711624"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000297_0000000297/records_20186_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP12%282018%29093"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2018)093'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep12(2018)093 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0fa8f0e12dd9403591029f6422ce6248
4 schema:citation sg:pub.10.1007/bf01217803
5 sg:pub.10.1007/jhep04(2014)096
6 sg:pub.10.1007/jhep08(2010)033
7 sg:pub.10.1007/jhep10(2014)018
8 sg:pub.10.1088/1126-6708/2008/09/130
9 https://doi.org/10.1016/0370-2693(79)90838-4
10 https://doi.org/10.1016/0370-2693(86)91028-2
11 https://doi.org/10.1016/0370-2693(93)91516-p
12 https://doi.org/10.1016/0550-3213(73)90350-7
13 https://doi.org/10.1016/0550-3213(85)90022-7
14 https://doi.org/10.1016/0550-3213(85)90252-4
15 https://doi.org/10.1016/0550-3213(90)90262-c
16 https://doi.org/10.1016/0550-3213(92)90008-y
17 https://doi.org/10.1016/0550-3213(94)00503-7
18 https://doi.org/10.1016/s0550-3213(02)00024-x
19 https://doi.org/10.1103/physrev.58.716
20 https://doi.org/10.1103/physrevd.11.2227
21 https://doi.org/10.1103/physrevd.20.439
22 https://doi.org/10.1103/physrevd.49.2041
23 https://doi.org/10.1103/physrevd.90.105008
24 https://doi.org/10.1103/physrevlett.101.031601
25 https://doi.org/10.1103/physrevlett.103.091601
26 https://doi.org/10.1103/physrevlett.107.181601
27 https://doi.org/10.1103/physrevlett.117.167002
28 https://doi.org/10.1103/physrevlett.49.957
29 https://doi.org/10.1103/physrevlett.51.2250
30 https://doi.org/10.1103/physrevlett.56.2564
31 https://doi.org/10.1103/physrevlett.62.1221
32 https://doi.org/10.1103/physrevlett.62.1937
33 https://doi.org/10.1103/physrevlett.98.111601
34 https://doi.org/10.1142/s0217732389000046
35 https://doi.org/10.1142/s0217732392003220
36 https://doi.org/10.1142/s0217751x91001210
37 https://doi.org/10.1209/0295-5075/77/47005
38 https://doi.org/10.2969/aspm/01710289
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description We discuss a unified framework of dealing with electrically charged, anyonic vortices in 2+1 dimensional spacetimes and extended, anyonic string-like vortices in one higher dimension. We elaborate on two ways of charging these topological objects and point out that in both cases the vortices and strings obey fractional statistics as a consequence of being electrically charged. The statistics of the charged vortices and strings can be obtained from the phase shift of their respective wave-functions under the classic Aharonov-Bohm type experiments. We show that for a manifold with boundary, where one can realize 2+1 dimensional vortices as endpoints of trivially extended 3+1 dimensional strings, there is a smooth limit where the phase shift of a bulk string-vortex goes over to the phase shift of the boundary vortex. This also enables one to read off the bulk statistics (arising essentially from either a QCD theta-type term or an external current along the string) just from the corresponding boundary statistics in a generic setting. Finally, we discuss various applications of these findings, and in particular their prospects for the AdS/CFT duality.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N43cc98a44eb9406aa05051350a7b64b8
46 N7d4fcf603ec84e40a5d3c1bec13ad183
47 sg:journal.1052482
48 schema:name Bulk-boundary correspondence between charged, anyonic strings and vortices
49 schema:pagination 93
50 schema:productId N39348ad5710d44738a69d70402260f61
51 Ncad1f27787244c41a69c3b63d80d668b
52 Nef7540c8bc0d4ed1ba236fe70600a304
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110711624
54 https://doi.org/10.1007/jhep12(2018)093
55 schema:sdDatePublished 2019-04-11T08:24
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N03f49830ebfb4fd3be83f1551e065fb2
58 schema:url https://link.springer.com/10.1007%2FJHEP12%282018%29093
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N03f49830ebfb4fd3be83f1551e065fb2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N0fa8f0e12dd9403591029f6422ce6248 rdf:first sg:person.012146221161.90
65 rdf:rest Nb79459b73b76485cbfdc1065550640db
66 N22eaead71188486b90098b90a1d68c5a rdf:first sg:person.012337662607.36
67 rdf:rest rdf:nil
68 N39348ad5710d44738a69d70402260f61 schema:name readcube_id
69 schema:value 77e1c9cb233de9307af701211e674ca44a37a492a457c2c139cae3b2a63339ae
70 rdf:type schema:PropertyValue
71 N43cc98a44eb9406aa05051350a7b64b8 schema:volumeNumber 2018
72 rdf:type schema:PublicationVolume
73 N7d4fcf603ec84e40a5d3c1bec13ad183 schema:issueNumber 12
74 rdf:type schema:PublicationIssue
75 Nb79459b73b76485cbfdc1065550640db rdf:first sg:person.010056233065.85
76 rdf:rest N22eaead71188486b90098b90a1d68c5a
77 Ncad1f27787244c41a69c3b63d80d668b schema:name dimensions_id
78 schema:value pub.1110711624
79 rdf:type schema:PropertyValue
80 Nef7540c8bc0d4ed1ba236fe70600a304 schema:name doi
81 schema:value 10.1007/jhep12(2018)093
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1052482 schema:issn 1029-8479
90 1126-6708
91 schema:name Journal of High Energy Physics
92 rdf:type schema:Periodical
93 sg:person.010056233065.85 schema:affiliation https://www.grid.ac/institutes/grid.5734.5
94 schema:familyName Sarkar
95 schema:givenName Debajyoti
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056233065.85
97 rdf:type schema:Person
98 sg:person.012146221161.90 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
99 schema:familyName Gußmann
100 schema:givenName Alexander
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146221161.90
102 rdf:type schema:Person
103 sg:person.012337662607.36 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
104 schema:familyName Wintergerst
105 schema:givenName Nico
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337662607.36
107 rdf:type schema:Person
108 sg:pub.10.1007/bf01217803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015652315
109 https://doi.org/10.1007/bf01217803
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep04(2014)096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015967217
112 https://doi.org/10.1007/jhep04(2014)096
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/jhep08(2010)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046491104
115 https://doi.org/10.1007/jhep08(2010)033
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep10(2014)018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750590
118 https://doi.org/10.1007/jhep10(2014)018
119 rdf:type schema:CreativeWork
120 sg:pub.10.1088/1126-6708/2008/09/130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047266435
121 https://doi.org/10.1088/1126-6708/2008/09/130
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0370-2693(79)90838-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047966837
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0370-2693(86)91028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015496181
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0370-2693(93)91516-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1013819027
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0550-3213(73)90350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022043331
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0550-3213(85)90022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038476281
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0550-3213(85)90252-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048010296
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0550-3213(90)90262-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1039597069
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0550-3213(92)90008-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016691028
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0550-3213(94)00503-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016777738
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0550-3213(02)00024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004487325
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrev.58.716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451361
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevd.11.2227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682942
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevd.20.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687650
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevd.49.2041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026510372
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevd.90.105008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010899121
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.101.031601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045143
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.103.091601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040124381
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.107.181601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537847
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.117.167002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766560
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.49.957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788111
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.51.2250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789351
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.56.2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793318
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.62.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798421
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.62.1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798649
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.98.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037417156
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1142/s0217732389000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062917448
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1142/s0217732392003220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918847
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1142/s0217751x91001210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062929223
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1209/0295-5075/77/47005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026006231
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2969/aspm/01710289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105017851
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
184 schema:name Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstr. 37, 80333, München, Germany
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
187 schema:name The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen Ø, Denmark
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.5734.5 schema:alternateName University of Bern
190 schema:name Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...