N =1 Deformations and RG flows of N =2 SCFTs, part II: non-principal deformations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-20

AUTHORS

Prarit Agarwal, Kazunobu Maruyoshi, Jaewon Song

ABSTRACT

We continue to investigate the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 deformations of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 at the end point of the RG flow. Most notably, we find that the SU(N ) and Sp(N ) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A1, D2N −1) and (A1, D2N ) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A1, DN ) class of AD theories. Moreover, we find an infrared duality between N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories where the fixed point is described by an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra. More... »

PAGES

103

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-12-20. BPS spectrum of Argyres-Douglas theory via spectral network in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-02-03. Stress-tensor OPE in N=2 superconformal theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-27. Argyres-Douglas theories and S-duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10-06. Infinitely many N=1 dualities from m + 1 − m = 1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-18. BPS Quivers and Spectra of Complete N=2 Quantum Field Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-09-07. Higher S-dualities and Shephard-Todd groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-03. Bootstrapping the superconformal index with surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-02-13. Wild quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04-30. A crack in the conformal window in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-04-01. N=2 central charge bounds from 2d chiral algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-28. New N = 1 dualities from M5-branes and outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-12-09. A counterexample to the a-`theorem' in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-02-05. Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01-08. Schur indices, BPS particles, and Argyres-Douglas theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-02-24. Argyres-Douglas theories, the Macdonald index, and an RG inequality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-11-08. Central charges and U(1)R symmetries in 𝒩 = 1 super Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-01. Central charges and RG flow of strongly-coupled theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-16. Elliptic Hypergeometry of Supersymmetric Dualities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-09-22. Central charges of 𝒩 = 2 superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-15. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-30. Tinkertoys for the twisted D-series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-15. Infinite Chiral Symmetry in Four Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-11-18. Geometric engineering, mirror symmetry and 6d10→4dN=2 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-09-01. Tinkertoys for the E6 theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-26. The superconformal index of class theories of type D in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-18. Infrared computations of defect Schur indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-01-15. A holographic computation of the central charges of d = 4, 𝒩 = 2 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-29. Refined checks and exact dualities in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03-10. Quiver tails and N=1 SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-12-11. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2016)103

    DOI

    http://dx.doi.org/10.1007/jhep12(2016)103

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032589095


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 151-747, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 151-747, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agarwal", 
            "givenName": "Prarit", 
            "id": "sg:person.011336674601.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.263319.c", 
              "name": [
                "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maruyoshi", 
            "givenName": "Kazunobu", 
            "id": "sg:person.014757666656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jaewon", 
            "id": "sg:person.016403722241.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2013)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030213861", 
              "https://doi.org/10.1007/jhep01(2013)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050067337", 
              "https://doi.org/10.1007/jhep04(2015)173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2015)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053394950", 
              "https://doi.org/10.1007/jhep03(2015)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041258983", 
              "https://doi.org/10.1007/jhep05(2014)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2016)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049367026", 
              "https://doi.org/10.1007/jhep02(2016)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1218-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038309539", 
              "https://doi.org/10.1007/s00220-011-1218-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020743649", 
              "https://doi.org/10.1007/jhep02(2015)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014720481", 
              "https://doi.org/10.1007/jhep04(2013)165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011988102", 
              "https://doi.org/10.1007/jhep11(2015)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038664066", 
              "https://doi.org/10.1007/jhep03(2013)006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036285701", 
              "https://doi.org/10.1007/jhep01(2013)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/01/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033149929", 
              "https://doi.org/10.1088/1126-6708/2008/01/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024402067", 
              "https://doi.org/10.1007/jhep10(2015)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003019049", 
              "https://doi.org/10.1007/jhep01(2016)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009053098", 
              "https://doi.org/10.1007/jhep09(2015)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2016)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002160462", 
              "https://doi.org/10.1007/jhep02(2016)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022630975", 
              "https://doi.org/10.1007/jhep10(2012)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051712656", 
              "https://doi.org/10.1007/jhep12(2013)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003468441", 
              "https://doi.org/10.1007/jhep09(2015)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2012)050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037559667", 
              "https://doi.org/10.1007/jhep12(2012)050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2016)019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051381032", 
              "https://doi.org/10.1007/jhep02(2016)019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/12/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031052455", 
              "https://doi.org/10.1088/1126-6708/2008/12/020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017023640", 
              "https://doi.org/10.1007/jhep03(2014)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006804165", 
              "https://doi.org/10.1007/jhep04(2016)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/11/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017852871", 
              "https://doi.org/10.1088/1126-6708/2003/11/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046810888", 
              "https://doi.org/10.1088/1126-6708/2008/09/109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1789-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015933047", 
              "https://doi.org/10.1007/s00220-013-1789-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026021927", 
              "https://doi.org/10.1007/jhep11(2016)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001081567", 
              "https://doi.org/10.1007/jhep02(2012)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008636328", 
              "https://doi.org/10.1007/s00220-014-2272-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12-20", 
        "datePublishedReg": "2016-12-20", 
        "description": "We continue to investigate the N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 deformations of four-dimensional N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 at the end point of the RG flow. Most notably, we find that the SU(N ) and Sp(N ) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A1, D2N \u22121) and (A1, D2N ) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A1, DN ) class of AD theories. Moreover, we find an infrared duality between N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 theories where the fixed point is described by an N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep12(2016)103", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4322069", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "superconformal field theories", 
          "Argyres-Douglas theories", 
          "RG flow", 
          "two-dimensional chiral algebra", 
          "AD theory", 
          "full superconformal index", 
          "renormalization group flow", 
          "amount of supersymmetry", 
          "class of examples", 
          "infrared duality", 
          "chiral algebra", 
          "field theory", 
          "central charge", 
          "group flow", 
          "supersymmetry enhancement", 
          "number of examples", 
          "certain bounds", 
          "certain class", 
          "nilpotent elements", 
          "superconformal index", 
          "flavor symmetry", 
          "theory", 
          "SQCD", 
          "possible deformations", 
          "algebra", 
          "class", 
          "flow", 
          "supersymmetry", 
          "bounds", 
          "Part II", 
          "duality", 
          "symmetry", 
          "point", 
          "deformation", 
          "charge", 
          "number", 
          "types", 
          "elements", 
          "enhancement", 
          "end point", 
          "index", 
          "amount", 
          "example"
        ], 
        "name": "N =1 Deformations and RG flows of N =2 SCFTs, part II: non-principal deformations", 
        "pagination": "103", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032589095"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2016)103"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2016)103", 
          "https://app.dimensions.ai/details/publication/pub.1032589095"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep12(2016)103"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)103'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)103'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)103'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)103'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      22 PREDICATES      104 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2016)103 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1100d1cd40d24b3c8a68fcaeea3068c0
    4 schema:citation sg:pub.10.1007/jhep01(2013)022
    5 sg:pub.10.1007/jhep01(2013)100
    6 sg:pub.10.1007/jhep01(2016)040
    7 sg:pub.10.1007/jhep02(2012)031
    8 sg:pub.10.1007/jhep02(2013)110
    9 sg:pub.10.1007/jhep02(2015)185
    10 sg:pub.10.1007/jhep02(2016)019
    11 sg:pub.10.1007/jhep02(2016)045
    12 sg:pub.10.1007/jhep02(2016)159
    13 sg:pub.10.1007/jhep03(2010)032
    14 sg:pub.10.1007/jhep03(2013)006
    15 sg:pub.10.1007/jhep03(2014)133
    16 sg:pub.10.1007/jhep03(2015)049
    17 sg:pub.10.1007/jhep04(2013)165
    18 sg:pub.10.1007/jhep04(2015)173
    19 sg:pub.10.1007/jhep04(2016)004
    20 sg:pub.10.1007/jhep05(2014)120
    21 sg:pub.10.1007/jhep06(2013)056
    22 sg:pub.10.1007/jhep08(2010)107
    23 sg:pub.10.1007/jhep09(2015)007
    24 sg:pub.10.1007/jhep09(2015)035
    25 sg:pub.10.1007/jhep10(2012)178
    26 sg:pub.10.1007/jhep10(2015)035
    27 sg:pub.10.1007/jhep11(2015)123
    28 sg:pub.10.1007/jhep11(2016)106
    29 sg:pub.10.1007/jhep12(2012)050
    30 sg:pub.10.1007/jhep12(2013)092
    31 sg:pub.10.1007/s00220-007-0258-7
    32 sg:pub.10.1007/s00220-011-1218-9
    33 sg:pub.10.1007/s00220-012-1607-8
    34 sg:pub.10.1007/s00220-013-1789-8
    35 sg:pub.10.1007/s00220-014-2272-x
    36 sg:pub.10.1088/1126-6708/2003/11/013
    37 sg:pub.10.1088/1126-6708/2008/01/037
    38 sg:pub.10.1088/1126-6708/2008/09/109
    39 sg:pub.10.1088/1126-6708/2008/12/020
    40 schema:datePublished 2016-12-20
    41 schema:datePublishedReg 2016-12-20
    42 schema:description We continue to investigate the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 deformations of four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 at the end point of the RG flow. Most notably, we find that the SU(N ) and Sp(N ) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A1, D2N −1) and (A1, D2N ) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A1, DN ) class of AD theories. Moreover, we find an infrared duality between N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories where the fixed point is described by an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N4be2996375c8457c9d4f4a7cf5e1530b
    47 Nf9bc37cd6dc14c5c97e6d739151bcbc1
    48 sg:journal.1052482
    49 schema:keywords AD theory
    50 Argyres-Douglas theories
    51 Part II
    52 RG flow
    53 SQCD
    54 algebra
    55 amount
    56 amount of supersymmetry
    57 bounds
    58 central charge
    59 certain bounds
    60 certain class
    61 charge
    62 chiral algebra
    63 class
    64 class of examples
    65 deformation
    66 duality
    67 elements
    68 end point
    69 enhancement
    70 example
    71 field theory
    72 flavor symmetry
    73 flow
    74 full superconformal index
    75 group flow
    76 index
    77 infrared duality
    78 nilpotent elements
    79 number
    80 number of examples
    81 point
    82 possible deformations
    83 renormalization group flow
    84 superconformal field theories
    85 superconformal index
    86 supersymmetry
    87 supersymmetry enhancement
    88 symmetry
    89 theory
    90 two-dimensional chiral algebra
    91 types
    92 schema:name N =1 Deformations and RG flows of N =2 SCFTs, part II: non-principal deformations
    93 schema:pagination 103
    94 schema:productId N0fc87a6fe22545d7b3900a2059018e24
    95 Nc2eeefd9221d4685926f303757ae56a7
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589095
    97 https://doi.org/10.1007/jhep12(2016)103
    98 schema:sdDatePublished 2022-06-01T22:14
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N7893d4687a9f4eefb701be356f2cdaf4
    101 schema:url https://doi.org/10.1007/jhep12(2016)103
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N0fc87a6fe22545d7b3900a2059018e24 schema:name doi
    106 schema:value 10.1007/jhep12(2016)103
    107 rdf:type schema:PropertyValue
    108 N1100d1cd40d24b3c8a68fcaeea3068c0 rdf:first sg:person.011336674601.46
    109 rdf:rest N5108936c026d41e3bb215018b5e970d2
    110 N4be2996375c8457c9d4f4a7cf5e1530b schema:volumeNumber 2016
    111 rdf:type schema:PublicationVolume
    112 N5108936c026d41e3bb215018b5e970d2 rdf:first sg:person.014757666656.30
    113 rdf:rest Nb70c1641351c4341a8b97c72b38af904
    114 N7893d4687a9f4eefb701be356f2cdaf4 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Nb70c1641351c4341a8b97c72b38af904 rdf:first sg:person.016403722241.33
    117 rdf:rest rdf:nil
    118 Nc2eeefd9221d4685926f303757ae56a7 schema:name dimensions_id
    119 schema:value pub.1032589095
    120 rdf:type schema:PropertyValue
    121 Nf9bc37cd6dc14c5c97e6d739151bcbc1 schema:issueNumber 12
    122 rdf:type schema:PublicationIssue
    123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Mathematical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Pure Mathematics
    128 rdf:type schema:DefinedTerm
    129 sg:grant.4322069 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep12(2016)103
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1052482 schema:issn 1029-8479
    132 1126-6708
    133 schema:name Journal of High Energy Physics
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.011336674601.46 schema:affiliation grid-institutes:grid.31501.36
    137 schema:familyName Agarwal
    138 schema:givenName Prarit
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46
    140 rdf:type schema:Person
    141 sg:person.014757666656.30 schema:affiliation grid-institutes:grid.263319.c
    142 schema:familyName Maruyoshi
    143 schema:givenName Kazunobu
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30
    145 rdf:type schema:Person
    146 sg:person.016403722241.33 schema:affiliation grid-institutes:grid.266100.3
    147 schema:familyName Song
    148 schema:givenName Jaewon
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33
    150 rdf:type schema:Person
    151 sg:pub.10.1007/jhep01(2013)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030213861
    152 https://doi.org/10.1007/jhep01(2013)022
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
    155 https://doi.org/10.1007/jhep01(2013)100
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep01(2016)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003019049
    158 https://doi.org/10.1007/jhep01(2016)040
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep02(2012)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081567
    161 https://doi.org/10.1007/jhep02(2012)031
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    164 https://doi.org/10.1007/jhep02(2013)110
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep02(2015)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743649
    167 https://doi.org/10.1007/jhep02(2015)185
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep02(2016)019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051381032
    170 https://doi.org/10.1007/jhep02(2016)019
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep02(2016)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049367026
    173 https://doi.org/10.1007/jhep02(2016)045
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep02(2016)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002160462
    176 https://doi.org/10.1007/jhep02(2016)159
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    179 https://doi.org/10.1007/jhep03(2010)032
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep03(2013)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038664066
    182 https://doi.org/10.1007/jhep03(2013)006
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep03(2014)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023640
    185 https://doi.org/10.1007/jhep03(2014)133
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep03(2015)049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394950
    188 https://doi.org/10.1007/jhep03(2015)049
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep04(2013)165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014720481
    191 https://doi.org/10.1007/jhep04(2013)165
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep04(2015)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067337
    194 https://doi.org/10.1007/jhep04(2015)173
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep04(2016)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006804165
    197 https://doi.org/10.1007/jhep04(2016)004
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep05(2014)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041258983
    200 https://doi.org/10.1007/jhep05(2014)120
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    203 https://doi.org/10.1007/jhep06(2013)056
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    206 https://doi.org/10.1007/jhep08(2010)107
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep09(2015)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003468441
    209 https://doi.org/10.1007/jhep09(2015)007
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep09(2015)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009053098
    212 https://doi.org/10.1007/jhep09(2015)035
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep10(2012)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022630975
    215 https://doi.org/10.1007/jhep10(2012)178
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep10(2015)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024402067
    218 https://doi.org/10.1007/jhep10(2015)035
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep11(2015)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011988102
    221 https://doi.org/10.1007/jhep11(2015)123
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep11(2016)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026021927
    224 https://doi.org/10.1007/jhep11(2016)106
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep12(2012)050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037559667
    227 https://doi.org/10.1007/jhep12(2012)050
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep12(2013)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051712656
    230 https://doi.org/10.1007/jhep12(2013)092
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    233 https://doi.org/10.1007/s00220-007-0258-7
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00220-011-1218-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309539
    236 https://doi.org/10.1007/s00220-011-1218-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    239 https://doi.org/10.1007/s00220-012-1607-8
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s00220-013-1789-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015933047
    242 https://doi.org/10.1007/s00220-013-1789-8
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00220-014-2272-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008636328
    245 https://doi.org/10.1007/s00220-014-2272-x
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1088/1126-6708/2003/11/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017852871
    248 https://doi.org/10.1088/1126-6708/2003/11/013
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1088/1126-6708/2008/01/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033149929
    251 https://doi.org/10.1088/1126-6708/2008/01/037
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1088/1126-6708/2008/09/109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046810888
    254 https://doi.org/10.1088/1126-6708/2008/09/109
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1088/1126-6708/2008/12/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031052455
    257 https://doi.org/10.1088/1126-6708/2008/12/020
    258 rdf:type schema:CreativeWork
    259 grid-institutes:grid.263319.c schema:alternateName Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    260 schema:name Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    261 rdf:type schema:Organization
    262 grid-institutes:grid.266100.3 schema:alternateName Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    263 schema:name Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    264 rdf:type schema:Organization
    265 grid-institutes:grid.31501.36 schema:alternateName Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 151-747, Seoul, Korea
    266 schema:name Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 151-747, Seoul, Korea
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...