Magnetically-charged black branes and viscosity/entropy ratios View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Hai-Shan Liu, H. Lü, C. N. Pope

ABSTRACT

We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of N p-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n − 2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n − 2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation. More... »

PAGES

97

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep12(2016)097

DOI

http://dx.doi.org/10.1007/jhep12(2016)097

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023425062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China", 
            "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hai-Shan", 
        "id": "sg:person.010047677665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "Department of Physics, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fc", 
        "givenName": "H.", 
        "id": "sg:person.012136555175.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.", 
            "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pope", 
        "givenName": "C. N.", 
        "id": "sg:person.07512552121.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjc/s10052-014-3176-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000578782", 
          "https://doi.org/10.1140/epjc/s10052-014-3176-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006176196", 
          "https://doi.org/10.1007/jhep01(2012)061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.066006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.066006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.066004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008576722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.066004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008576722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2015)063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011070013", 
          "https://doi.org/10.1007/jhep03(2015)063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012977536", 
          "https://doi.org/10.1007/jhep11(2010)151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012977536", 
          "https://doi.org/10.1007/jhep11(2010)151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.081601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.081601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/01/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014611989", 
          "https://doi.org/10.1088/1126-6708/2009/01/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2016)074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017504078", 
          "https://doi.org/10.1007/jhep07(2016)074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2016)074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017504078", 
          "https://doi.org/10.1007/jhep07(2016)074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00083-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022092215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491554", 
          "https://doi.org/10.1007/jhep01(2015)039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/10/088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341256", 
          "https://doi.org/10.1088/1126-6708/2009/10/088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/10/088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341256", 
          "https://doi.org/10.1088/1126-6708/2009/10/088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2015)176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027640290", 
          "https://doi.org/10.1007/jhep11(2015)176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/09/042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029501626", 
          "https://doi.org/10.1088/1126-6708/2002/09/042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2010)026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030969930", 
          "https://doi.org/10.1007/jhep10(2010)026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2010)026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030969930", 
          "https://doi.org/10.1007/jhep10(2010)026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031326231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031326231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.035121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032319541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.035121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032319541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2016)170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033597361", 
          "https://doi.org/10.1007/jhep03(2016)170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2011)036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033839839", 
          "https://doi.org/10.1007/jhep12(2011)036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2015)045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034170457", 
          "https://doi.org/10.1007/jhep02(2015)045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2011.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034396222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/25/2/025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034682626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034779061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034779061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.126006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041564247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.126006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041564247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026654312961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042716891", 
          "https://doi.org/10.1023/a:1026654312961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2012)070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043343521", 
          "https://doi.org/10.1007/jhep10(2012)070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)00377-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044092489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045867629", 
          "https://doi.org/10.1007/jhep05(2014)101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045867629", 
          "https://doi.org/10.1007/jhep05(2014)101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/10/064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047697458", 
          "https://doi.org/10.1088/1126-6708/2003/10/064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048134311", 
          "https://doi.org/10.1007/jhep01(2012)094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2015)028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048667606", 
          "https://doi.org/10.1007/jhep10(2015)028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.021601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.021601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2012)054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051190038", 
          "https://doi.org/10.1007/jhep05(2012)054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.064014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060710636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.064014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060710636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.044030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060711926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.044030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060711926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.106001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.106001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217984911027315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062945221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.124.931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063129583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of N p-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n \u2212 2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n \u2212 2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios \u03b7/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios \u03b7/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep12(2016)097", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Magnetically-charged black branes and viscosity/entropy ratios", 
    "pagination": "97", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f9a87783da7377231cfc0bb5e9ca3b24eed50673920543072950e166ccda02a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep12(2016)097"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023425062"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep12(2016)097", 
      "https://app.dimensions.ai/details/publication/pub.1023425062"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP12%282016%29097"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)097'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)097'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)097'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2016)097'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep12(2016)097 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2eae6efb45cf4a5189395acbfa24ffc9
4 schema:citation sg:pub.10.1007/jhep01(2012)061
5 sg:pub.10.1007/jhep01(2012)094
6 sg:pub.10.1007/jhep01(2015)039
7 sg:pub.10.1007/jhep02(2015)045
8 sg:pub.10.1007/jhep03(2015)063
9 sg:pub.10.1007/jhep03(2016)170
10 sg:pub.10.1007/jhep05(2012)054
11 sg:pub.10.1007/jhep05(2014)101
12 sg:pub.10.1007/jhep07(2016)074
13 sg:pub.10.1007/jhep10(2010)026
14 sg:pub.10.1007/jhep10(2012)070
15 sg:pub.10.1007/jhep10(2015)028
16 sg:pub.10.1007/jhep11(2010)151
17 sg:pub.10.1007/jhep11(2015)176
18 sg:pub.10.1007/jhep12(2011)036
19 sg:pub.10.1023/a:1026654312961
20 sg:pub.10.1088/1126-6708/2002/09/042
21 sg:pub.10.1088/1126-6708/2003/10/064
22 sg:pub.10.1088/1126-6708/2009/01/044
23 sg:pub.10.1088/1126-6708/2009/10/088
24 sg:pub.10.1140/epjc/s10052-014-3176-9
25 https://doi.org/10.1016/j.physletb.2011.04.009
26 https://doi.org/10.1016/s0370-1573(99)00083-6
27 https://doi.org/10.1016/s0370-2693(98)00377-3
28 https://doi.org/10.1016/s0550-3213(99)00419-8
29 https://doi.org/10.1088/0264-9381/25/2/025006
30 https://doi.org/10.1103/physrevb.85.035121
31 https://doi.org/10.1103/physrevd.77.126006
32 https://doi.org/10.1103/physrevd.78.106005
33 https://doi.org/10.1103/physrevd.79.066004
34 https://doi.org/10.1103/physrevd.90.066006
35 https://doi.org/10.1103/physrevd.92.064014
36 https://doi.org/10.1103/physrevd.92.106005
37 https://doi.org/10.1103/physrevd.93.044030
38 https://doi.org/10.1103/physrevd.94.106001
39 https://doi.org/10.1103/physrevlett.108.021601
40 https://doi.org/10.1103/physrevlett.87.081601
41 https://doi.org/10.1103/physrevlett.94.111601
42 https://doi.org/10.1142/s0217984911027315
43 https://doi.org/10.1143/ptp.124.931
44 https://doi.org/10.4310/atmp.1998.v2.n2.a2
45 schema:datePublished 2016-12
46 schema:datePublishedReg 2016-12-01
47 schema:description We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of N p-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n − 2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n − 2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N358355d77c36456a95e662cf5990d291
52 Ndeba7e6d09554d70a30f79e8bf9c7541
53 sg:journal.1052482
54 schema:name Magnetically-charged black branes and viscosity/entropy ratios
55 schema:pagination 97
56 schema:productId N02bcfe6de930480b977e6d0c14a74430
57 N2c18e94ca5e5408897ce286df7a5ed4d
58 N44080aaa8ba2403f979f283d34f770e3
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023425062
60 https://doi.org/10.1007/jhep12(2016)097
61 schema:sdDatePublished 2019-04-11T13:09
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N5970c495cec74bcc87fa070992f49454
64 schema:url https://link.springer.com/10.1007%2FJHEP12%282016%29097
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N02bcfe6de930480b977e6d0c14a74430 schema:name dimensions_id
69 schema:value pub.1023425062
70 rdf:type schema:PropertyValue
71 N2c18e94ca5e5408897ce286df7a5ed4d schema:name doi
72 schema:value 10.1007/jhep12(2016)097
73 rdf:type schema:PropertyValue
74 N2eae6efb45cf4a5189395acbfa24ffc9 rdf:first sg:person.010047677665.03
75 rdf:rest Na1f7bea7ae444b2997ed848891933ebd
76 N358355d77c36456a95e662cf5990d291 schema:volumeNumber 2016
77 rdf:type schema:PublicationVolume
78 N44080aaa8ba2403f979f283d34f770e3 schema:name readcube_id
79 schema:value 6f9a87783da7377231cfc0bb5e9ca3b24eed50673920543072950e166ccda02a
80 rdf:type schema:PropertyValue
81 N5970c495cec74bcc87fa070992f49454 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N772304bea66c4dd5999331a426bf23d4 rdf:first sg:person.07512552121.35
84 rdf:rest rdf:nil
85 Na1f7bea7ae444b2997ed848891933ebd rdf:first sg:person.012136555175.11
86 rdf:rest N772304bea66c4dd5999331a426bf23d4
87 Ndeba7e6d09554d70a30f79e8bf9c7541 schema:issueNumber 12
88 rdf:type schema:PublicationIssue
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1052482 schema:issn 1029-8479
96 1126-6708
97 schema:name Journal of High Energy Physics
98 rdf:type schema:Periodical
99 sg:person.010047677665.03 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
100 schema:familyName Liu
101 schema:givenName Hai-Shan
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03
103 rdf:type schema:Person
104 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
105 schema:familyName
106 schema:givenName H.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
108 rdf:type schema:Person
109 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
110 schema:familyName Pope
111 schema:givenName C. N.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
113 rdf:type schema:Person
114 sg:pub.10.1007/jhep01(2012)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006176196
115 https://doi.org/10.1007/jhep01(2012)061
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep01(2012)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048134311
118 https://doi.org/10.1007/jhep01(2012)094
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/jhep01(2015)039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491554
121 https://doi.org/10.1007/jhep01(2015)039
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/jhep02(2015)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034170457
124 https://doi.org/10.1007/jhep02(2015)045
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/jhep03(2015)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011070013
127 https://doi.org/10.1007/jhep03(2015)063
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/jhep03(2016)170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033597361
130 https://doi.org/10.1007/jhep03(2016)170
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/jhep05(2012)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051190038
133 https://doi.org/10.1007/jhep05(2012)054
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/jhep05(2014)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045867629
136 https://doi.org/10.1007/jhep05(2014)101
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/jhep07(2016)074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504078
139 https://doi.org/10.1007/jhep07(2016)074
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/jhep10(2010)026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030969930
142 https://doi.org/10.1007/jhep10(2010)026
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/jhep10(2012)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043343521
145 https://doi.org/10.1007/jhep10(2012)070
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/jhep10(2015)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048667606
148 https://doi.org/10.1007/jhep10(2015)028
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/jhep11(2010)151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012977536
151 https://doi.org/10.1007/jhep11(2010)151
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/jhep11(2015)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027640290
154 https://doi.org/10.1007/jhep11(2015)176
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/jhep12(2011)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033839839
157 https://doi.org/10.1007/jhep12(2011)036
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1026654312961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042716891
160 https://doi.org/10.1023/a:1026654312961
161 rdf:type schema:CreativeWork
162 sg:pub.10.1088/1126-6708/2002/09/042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029501626
163 https://doi.org/10.1088/1126-6708/2002/09/042
164 rdf:type schema:CreativeWork
165 sg:pub.10.1088/1126-6708/2003/10/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047697458
166 https://doi.org/10.1088/1126-6708/2003/10/064
167 rdf:type schema:CreativeWork
168 sg:pub.10.1088/1126-6708/2009/01/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014611989
169 https://doi.org/10.1088/1126-6708/2009/01/044
170 rdf:type schema:CreativeWork
171 sg:pub.10.1088/1126-6708/2009/10/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025341256
172 https://doi.org/10.1088/1126-6708/2009/10/088
173 rdf:type schema:CreativeWork
174 sg:pub.10.1140/epjc/s10052-014-3176-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000578782
175 https://doi.org/10.1140/epjc/s10052-014-3176-9
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physletb.2011.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034396222
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0370-1573(99)00083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022092215
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0370-2693(98)00377-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044092489
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0550-3213(99)00419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369632
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/0264-9381/25/2/025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034682626
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.85.035121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032319541
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevd.77.126006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041564247
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevd.79.066004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008576722
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevd.90.066006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977815
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevd.92.064014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060710636
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevd.92.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034779061
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevd.93.044030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711926
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevd.94.106001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714579
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.108.021601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048790465
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.87.081601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251651
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.94.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031326231
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1142/s0217984911027315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062945221
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1143/ptp.124.931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063129583
214 rdf:type schema:CreativeWork
215 https://doi.org/10.4310/atmp.1998.v2.n2.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456894
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
218 schema:name Department of Physics, Beijing Normal University, 100875, Beijing, China
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
221 schema:name George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
222 Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
225 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
226 George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...