2015-12-14
AUTHORSAmihay Hanany, Kazunobu Maruyoshi
ABSTRACTWe study a class of four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} superconformal field theories obtained from the six-dimensional (1, 0) theory, on M5-branes on ℂ2/ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2/{\mathrm{\mathbb{Z}}}_k $$\end{document} orbifold singularity, compactified on a Riemann surface. This produces various quiver gauge theories whose matter contents are chiral. We classify the building blocks associated to pairs-of-pants, and study the gauging of them as the gluing of punctures. The Riemann surface picture makes the duality invariance of the resulting quiver theories manifest: the theories associated to the same Riemann surface flow to the same nontrivial infrared fixed point. We explicitly check this from the ’t Hooft anomalies of the global symmetries and central charges. More... »
PAGES1-32
http://scigraph.springernature.com/pub.10.1007/jhep12(2015)080
DOIhttp://dx.doi.org/10.1007/jhep12(2015)080
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037706085
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Imperial College London, Blackett Laboratory, Prince Concert Rd, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Imperial College London, Blackett Laboratory, Prince Concert Rd, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Hanany",
"givenName": "Amihay",
"id": "sg:person.012155553275.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Imperial College London, Blackett Laboratory, Prince Concert Rd, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Imperial College London, Blackett Laboratory, Prince Concert Rd, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Maruyoshi",
"givenName": "Kazunobu",
"id": "sg:person.014757666656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep07(2015)073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010218429",
"https://doi.org/10.1007/jhep07(2015)073"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027602010",
"https://doi.org/10.1007/jhep01(2014)001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1999/10/031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022429683",
"https://doi.org/10.1088/1126-6708/1999/10/031"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001669470",
"https://doi.org/10.1007/jhep06(2012)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2014)154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038967054",
"https://doi.org/10.1007/jhep04(2014)154"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1999/01/022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039051327",
"https://doi.org/10.1088/1126-6708/1999/01/022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032453331",
"https://doi.org/10.1007/jhep01(2010)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025337838",
"https://doi.org/10.1007/jhep08(2012)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/05/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048015479",
"https://doi.org/10.1088/1126-6708/1998/05/001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2005/06/064",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035683796",
"https://doi.org/10.1088/1126-6708/2005/06/064"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2013)032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006998472",
"https://doi.org/10.1007/jhep06(2013)032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)227",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026901583",
"https://doi.org/10.1007/jhep10(2013)227"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026965803",
"https://doi.org/10.1007/jhep10(2013)010"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2015)035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024402067",
"https://doi.org/10.1007/jhep10(2015)035"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2013)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005532912",
"https://doi.org/10.1007/jhep07(2013)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2015)123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011988102",
"https://doi.org/10.1007/jhep11(2015)123"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048881894",
"https://doi.org/10.1007/jhep10(2013)001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/09/086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018116770",
"https://doi.org/10.1088/1126-6708/2009/09/086"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2015)054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022076696",
"https://doi.org/10.1007/jhep02(2015)054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2015)014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037227102",
"https://doi.org/10.1007/jhep07(2015)014"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051863349",
"https://doi.org/10.1007/jhep01(2014)142"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2013)056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010569175",
"https://doi.org/10.1007/jhep06(2013)056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2015)049",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053394950",
"https://doi.org/10.1007/jhep03(2015)049"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2014)121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030354515",
"https://doi.org/10.1007/jhep08(2014)121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2012)036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038701666",
"https://doi.org/10.1007/jhep09(2012)036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/01/096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042410190",
"https://doi.org/10.1088/1126-6708/2006/01/096"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/10/029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023478259",
"https://doi.org/10.1088/1126-6708/2007/10/029"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004156761",
"https://doi.org/10.1007/jhep06(2015)047"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/03/003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049975593",
"https://doi.org/10.1088/1126-6708/1998/03/003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2014)036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033007760",
"https://doi.org/10.1007/jhep04(2014)036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2012)141",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005195496",
"https://doi.org/10.1007/jhep11(2012)141"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2014)133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017023640",
"https://doi.org/10.1007/jhep03(2014)133"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12-14",
"datePublishedReg": "2015-12-14",
"description": "We study a class of four-dimensional N=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=1 $$\\end{document} superconformal field theories obtained from the six-dimensional (1, 0) theory, on M5-branes on \u21022/\u2124k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathrm{\\mathbb{C}}}^2/{\\mathrm{\\mathbb{Z}}}_k $$\\end{document} orbifold singularity, compactified on a Riemann surface. This produces various quiver gauge theories whose matter contents are chiral. We classify the building blocks associated to pairs-of-pants, and study the gauging of them as the gluing of punctures. The Riemann surface picture makes the duality invariance of the resulting quiver theories manifest: the theories associated to the same Riemann surface flow to the same nontrivial infrared fixed point. We explicitly check this from the \u2019t Hooft anomalies of the global symmetries and central charges.",
"genre": "article",
"id": "sg:pub.10.1007/jhep12(2015)080",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3861842",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2755951",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2015"
}
],
"keywords": [
"superconformal field theories",
"six-dimensional theory",
"quiver gauge theories",
"field theory",
"M5-branes",
"orbifold singularities",
"Riemann surface",
"gauge theory",
"duality invariance",
"Hooft anomalies",
"global symmetry",
"central charge",
"chiral theory",
"theory",
"class S",
"surface flow",
"singularity",
"gauging",
"invariance",
"symmetry",
"class",
"gluing",
"flow",
"point",
"building blocks",
"pairs",
"charge",
"surface",
"matter content",
"picture",
"anomalies",
"block",
"manifest",
"pants",
"surface picture",
"content",
"puncture"
],
"name": "Chiral theories of class S",
"pagination": "1-32",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037706085"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep12(2015)080"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep12(2015)080",
"https://app.dimensions.ai/details/publication/pub.1037706085"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:12",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_656.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep12(2015)080"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2015)080'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2015)080'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2015)080'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2015)080'
This table displays all metadata directly associated to this object as RDF triples.
238 TRIPLES
22 PREDICATES
95 URIs
54 LITERALS
6 BLANK NODES