Very general holographic superconductors and entanglement thermodynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-19

AUTHORS

Anshuman Dey, Subhash Mahapatra, Tapobrata Sarkar

ABSTRACT

We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds. More... »

PAGES

135

References to SciGraph publications

  • 2012-03-21. Minimal holographic superconductors from maximal supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04-29. A refinement of entanglement entropy and the number of degrees of freedom in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-24. Generalized superconductors and holographic optics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-22. Entanglement thermodynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04. The Large-N Limit of Superconformal Field Theories and Supergravity in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2013-06-14. Entanglement entropy in holographic p-wave superconductor/insulator model in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-15. Entanglement entropy and Wilson loop in Stückelberg holographic insulator/superconductor model in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-12. A Stress Tensor for Anti-de Sitter Gravity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-03. Holographic Reconstruction of Spacetime¶and Renormalization in the AdS/CFT Correspondence in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-09-24. A holographic superconductor in an external magnetic field in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-04-23. A general class of holographic superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-12-03. Holographic superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-10-05. Holographic superconductors with higher curvature corrections in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06-26. Generalized holographic superconductors with higher derivative couplings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-21. Holographic studies of entanglement entropy in superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-09-19. Minkowski-space correlators in AdS/CFT correspondence: recipe and applications in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-28. Entanglement entropy as a probe of the proximity effect in holographic superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep12(2014)135

    DOI

    http://dx.doi.org/10.1007/jhep12(2014)135

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046609424


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dey", 
            "givenName": "Anshuman", 
            "id": "sg:person.010275113336.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275113336.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahapatra", 
            "givenName": "Subhash", 
            "id": "sg:person.014113237274.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014113237274.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarkar", 
            "givenName": "Tapobrata", 
            "id": "sg:person.01217741634.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep10(2012)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043225477", 
              "https://doi.org/10.1007/jhep10(2012)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005820429", 
              "https://doi.org/10.1007/jhep04(2013)162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051944080", 
              "https://doi.org/10.1007/s002200100381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036899225", 
              "https://doi.org/10.1088/1126-6708/2008/09/121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053123047", 
              "https://doi.org/10.1007/jhep05(2014)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/12/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059132768", 
              "https://doi.org/10.1088/1126-6708/2008/12/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026654312961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042716891", 
              "https://doi.org/10.1023/a:1026654312961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053120895", 
              "https://doi.org/10.1007/jhep04(2010)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014253353", 
              "https://doi.org/10.1007/jhep06(2013)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/10/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050876479", 
              "https://doi.org/10.1088/1126-6708/2009/10/010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/09/042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029501626", 
              "https://doi.org/10.1088/1126-6708/2002/09/042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048951328", 
              "https://doi.org/10.1007/jhep06(2014)147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041572566", 
              "https://doi.org/10.1007/jhep03(2012)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026500954", 
              "https://doi.org/10.1007/jhep01(2014)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044084573", 
              "https://doi.org/10.1007/jhep08(2013)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248422", 
              "https://doi.org/10.1007/s002200050764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008501132", 
              "https://doi.org/10.1007/jhep05(2012)079"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12-19", 
        "datePublishedReg": "2014-12-19", 
        "description": "We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep12(2014)135", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "keywords": [
          "entanglement entropy", 
          "holographic superconductors", 
          "black hole background", 
          "phase diagram", 
          "entanglement thermodynamics", 
          "hole background", 
          "superconductors", 
          "rich phase structure", 
          "derivative coupling", 
          "phase structure", 
          "energy", 
          "diagram", 
          "coupling", 
          "free energy", 
          "entropy", 
          "thermodynamics", 
          "temperature", 
          "structure", 
          "system", 
          "tuning parameters", 
          "background", 
          "parameters", 
          "results", 
          "nature", 
          "dimensions", 
          "analogues", 
          "cases", 
          "differences", 
          "subclasses", 
          "indicators", 
          "higher derivative couplings", 
          "multiple tuning parameters", 
          "general holographic superconductors", 
          "perfect indicator", 
          "AdS-Schwarzschild cases", 
          "entangling temperature", 
          "non-hairy backgrounds"
        ], 
        "name": "Very general holographic superconductors and entanglement thermodynamics", 
        "pagination": "135", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046609424"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep12(2014)135"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep12(2014)135", 
          "https://app.dimensions.ai/details/publication/pub.1046609424"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_637.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep12(2014)135"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2014)135'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2014)135'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2014)135'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep12(2014)135'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      22 PREDICATES      79 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep12(2014)135 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N41c496b6c0b044adb216b049dbf5420a
    4 schema:citation sg:pub.10.1007/jhep01(2014)135
    5 sg:pub.10.1007/jhep03(2012)064
    6 sg:pub.10.1007/jhep04(2010)092
    7 sg:pub.10.1007/jhep04(2013)162
    8 sg:pub.10.1007/jhep05(2012)079
    9 sg:pub.10.1007/jhep05(2014)130
    10 sg:pub.10.1007/jhep06(2013)063
    11 sg:pub.10.1007/jhep06(2014)147
    12 sg:pub.10.1007/jhep08(2013)102
    13 sg:pub.10.1007/jhep10(2012)107
    14 sg:pub.10.1007/s002200050764
    15 sg:pub.10.1007/s002200100381
    16 sg:pub.10.1023/a:1026654312961
    17 sg:pub.10.1088/1126-6708/2002/09/042
    18 sg:pub.10.1088/1126-6708/2008/09/121
    19 sg:pub.10.1088/1126-6708/2008/12/015
    20 sg:pub.10.1088/1126-6708/2009/10/010
    21 schema:datePublished 2014-12-19
    22 schema:datePublishedReg 2014-12-19
    23 schema:description We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N34cd648fe677498882769198a108980c
    28 N6e3cc707ae284b15aefcceb86063b27c
    29 sg:journal.1052482
    30 schema:keywords AdS-Schwarzschild cases
    31 analogues
    32 background
    33 black hole background
    34 cases
    35 coupling
    36 derivative coupling
    37 diagram
    38 differences
    39 dimensions
    40 energy
    41 entanglement entropy
    42 entanglement thermodynamics
    43 entangling temperature
    44 entropy
    45 free energy
    46 general holographic superconductors
    47 higher derivative couplings
    48 hole background
    49 holographic superconductors
    50 indicators
    51 multiple tuning parameters
    52 nature
    53 non-hairy backgrounds
    54 parameters
    55 perfect indicator
    56 phase diagram
    57 phase structure
    58 results
    59 rich phase structure
    60 structure
    61 subclasses
    62 superconductors
    63 system
    64 temperature
    65 thermodynamics
    66 tuning parameters
    67 schema:name Very general holographic superconductors and entanglement thermodynamics
    68 schema:pagination 135
    69 schema:productId Nabb5e908a2a4450d9d0e2307beda7264
    70 Nf0a1122d5ca04b94b86137eb81a23b0d
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046609424
    72 https://doi.org/10.1007/jhep12(2014)135
    73 schema:sdDatePublished 2022-01-01T18:34
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N5c486163b7ba4b8cbe3acc3391678ab3
    76 schema:url https://doi.org/10.1007/jhep12(2014)135
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N34cd648fe677498882769198a108980c schema:volumeNumber 2014
    81 rdf:type schema:PublicationVolume
    82 N41c496b6c0b044adb216b049dbf5420a rdf:first sg:person.010275113336.38
    83 rdf:rest Ne855491fa2484e7d99b45d99a6f99c84
    84 N5c486163b7ba4b8cbe3acc3391678ab3 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N6e3cc707ae284b15aefcceb86063b27c schema:issueNumber 12
    87 rdf:type schema:PublicationIssue
    88 Nabb5e908a2a4450d9d0e2307beda7264 schema:name doi
    89 schema:value 10.1007/jhep12(2014)135
    90 rdf:type schema:PropertyValue
    91 Nb710cde06f4b4b1abaee88d23e876b9d rdf:first sg:person.01217741634.65
    92 rdf:rest rdf:nil
    93 Ne855491fa2484e7d99b45d99a6f99c84 rdf:first sg:person.014113237274.08
    94 rdf:rest Nb710cde06f4b4b1abaee88d23e876b9d
    95 Nf0a1122d5ca04b94b86137eb81a23b0d schema:name dimensions_id
    96 schema:value pub.1046609424
    97 rdf:type schema:PropertyValue
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Pure Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1052482 schema:issn 1029-8479
    105 1126-6708
    106 schema:name Journal of High Energy Physics
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.010275113336.38 schema:affiliation grid-institutes:grid.417965.8
    110 schema:familyName Dey
    111 schema:givenName Anshuman
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275113336.38
    113 rdf:type schema:Person
    114 sg:person.01217741634.65 schema:affiliation grid-institutes:grid.417965.8
    115 schema:familyName Sarkar
    116 schema:givenName Tapobrata
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65
    118 rdf:type schema:Person
    119 sg:person.014113237274.08 schema:affiliation grid-institutes:grid.417965.8
    120 schema:familyName Mahapatra
    121 schema:givenName Subhash
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014113237274.08
    123 rdf:type schema:Person
    124 sg:pub.10.1007/jhep01(2014)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026500954
    125 https://doi.org/10.1007/jhep01(2014)135
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep03(2012)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041572566
    128 https://doi.org/10.1007/jhep03(2012)064
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep04(2010)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053120895
    131 https://doi.org/10.1007/jhep04(2010)092
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep04(2013)162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005820429
    134 https://doi.org/10.1007/jhep04(2013)162
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep05(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501132
    137 https://doi.org/10.1007/jhep05(2012)079
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep05(2014)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053123047
    140 https://doi.org/10.1007/jhep05(2014)130
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep06(2013)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014253353
    143 https://doi.org/10.1007/jhep06(2013)063
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep06(2014)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048951328
    146 https://doi.org/10.1007/jhep06(2014)147
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep08(2013)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044084573
    149 https://doi.org/10.1007/jhep08(2013)102
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep10(2012)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043225477
    152 https://doi.org/10.1007/jhep10(2012)107
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s002200050764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248422
    155 https://doi.org/10.1007/s002200050764
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s002200100381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051944080
    158 https://doi.org/10.1007/s002200100381
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1026654312961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042716891
    161 https://doi.org/10.1023/a:1026654312961
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1088/1126-6708/2002/09/042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029501626
    164 https://doi.org/10.1088/1126-6708/2002/09/042
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1088/1126-6708/2008/09/121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036899225
    167 https://doi.org/10.1088/1126-6708/2008/09/121
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1088/1126-6708/2008/12/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059132768
    170 https://doi.org/10.1088/1126-6708/2008/12/015
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1088/1126-6708/2009/10/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050876479
    173 https://doi.org/10.1088/1126-6708/2009/10/010
    174 rdf:type schema:CreativeWork
    175 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    176 schema:name Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...