Integrability, duality and sigma models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

V. A. Fateev, A. V. Litvinov

ABSTRACT

We introduce and study conformal field theories specified by W −algebras commuting with certain set of screening charges. These CFT’s possess perturbations which define integrable QFT’s. We establish that these QFT’s have local and non-local Integrals of Motion and admit the perturbation theory in the weak coupling region. We construct factorized scattering theory which is consistent with non-local Integrals of Motion and perturbation theory. In the strong coupling limit the S−matrix of this QFT tends to the scattering matrix of the O(N) sigma model. The perturbation theory, Bethe ansatz technique, renormalization group approach and methods of conformal field theory are applied to show, that the constructed QFT’s are dual to integrable deformation of O(N) sigma-models. More... »

PAGES

204

References to SciGraph publications

  • 2013-11. On classical q-deformations of integrable σ-models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04. S-matrix for strings on η-deformed AdS5 × S5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-03. Multipoint correlation functions in Liouville field theory and minimal Liouville gravity in THEORETICAL AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2018)204

    DOI

    http://dx.doi.org/10.1007/jhep11(2018)204

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110580013


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Landau Institute for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.436090.8", 
              "name": [
                "Laboratoire Charles Coulomb, Universit\u00e9 de Montpellier, 34095, Montpellier, France", 
                "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fateev", 
            "givenName": "V. A.", 
            "id": "sg:person.07774620255.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774620255.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Information Transmission Problems", 
              "id": "https://www.grid.ac/institutes/grid.435025.5", 
              "name": [
                "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia", 
                "Kharkevich Institute for Information Transmission Problems, 127994, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Litvinov", 
            "givenName": "A. V.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2013)192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001630330", 
              "https://doi.org/10.1007/jhep11(2013)192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(91)91283-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001919583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(91)91283-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001919583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.4468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004610971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.4468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004610971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)00078-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007824854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)00078-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007824854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(00)00417-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007967604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(79)90391-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019263166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-008-0038-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023057162", 
              "https://doi.org/10.1007/s11232-008-0038-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00256-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024259342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027386585", 
              "https://doi.org/10.1007/jhep04(2014)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90259-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027783323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90259-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027783323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90686-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029254482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90686-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029254482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(85)90384-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034879880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90320-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035263875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90320-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035263875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00525-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035548738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90001-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038721333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90001-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038721333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2004/05/p05003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040373878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(95)00883-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040727326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2015.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053009164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060682928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.3026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.11.3026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x91001052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062929207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x9500053x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062930313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3842/sigma.2017.080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092224047"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "We introduce and study conformal field theories specified by W \u2212algebras commuting with certain set of screening charges. These CFT\u2019s possess perturbations which define integrable QFT\u2019s. We establish that these QFT\u2019s have local and non-local Integrals of Motion and admit the perturbation theory in the weak coupling region. We construct factorized scattering theory which is consistent with non-local Integrals of Motion and perturbation theory. In the strong coupling limit the S\u2212matrix of this QFT tends to the scattering matrix of the O(N) sigma model. The perturbation theory, Bethe ansatz technique, renormalization group approach and methods of conformal field theory are applied to show, that the constructed QFT\u2019s are dual to integrable deformation of O(N) sigma-models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep11(2018)204", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Integrability, duality and sigma models", 
        "pagination": "204", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "636c48773a83ede2eb0a85aa321f4e3dc0d9bb72c199697252f1b5a5bc97cd2f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2018)204"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110580013"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2018)204", 
          "https://app.dimensions.ai/details/publication/pub.1110580013"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12008_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP11%282018%29204"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)204'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)204'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)204'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)204'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2018)204 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N099b43a3cb52417bb9865781fe1efc40
    4 schema:citation sg:pub.10.1007/jhep04(2014)002
    5 sg:pub.10.1007/jhep11(2013)192
    6 sg:pub.10.1007/s11232-008-0038-3
    7 https://doi.org/10.1016/0003-4916(79)90391-9
    8 https://doi.org/10.1016/0003-4916(85)90384-7
    9 https://doi.org/10.1016/0370-2693(85)90259-x
    10 https://doi.org/10.1016/0370-2693(90)90686-z
    11 https://doi.org/10.1016/0370-2693(91)91283-2
    12 https://doi.org/10.1016/0370-2693(94)00078-6
    13 https://doi.org/10.1016/0370-2693(95)00883-m
    14 https://doi.org/10.1016/0550-3213(89)90320-9
    15 https://doi.org/10.1016/0550-3213(93)90001-6
    16 https://doi.org/10.1016/0550-3213(96)00256-8
    17 https://doi.org/10.1016/j.nuclphysb.2015.06.001
    18 https://doi.org/10.1016/s0370-2693(00)00417-2
    19 https://doi.org/10.1016/s0550-3213(98)00525-2
    20 https://doi.org/10.1088/1742-5468/2004/05/p05003
    21 https://doi.org/10.1103/physrevd.11.2088
    22 https://doi.org/10.1103/physrevd.11.3026
    23 https://doi.org/10.1103/physrevlett.83.4468
    24 https://doi.org/10.1142/s0217751x91001052
    25 https://doi.org/10.1142/s0217751x9500053x
    26 https://doi.org/10.3842/sigma.2017.080
    27 schema:datePublished 2018-11
    28 schema:datePublishedReg 2018-11-01
    29 schema:description We introduce and study conformal field theories specified by W −algebras commuting with certain set of screening charges. These CFT’s possess perturbations which define integrable QFT’s. We establish that these QFT’s have local and non-local Integrals of Motion and admit the perturbation theory in the weak coupling region. We construct factorized scattering theory which is consistent with non-local Integrals of Motion and perturbation theory. In the strong coupling limit the S−matrix of this QFT tends to the scattering matrix of the O(N) sigma model. The perturbation theory, Bethe ansatz technique, renormalization group approach and methods of conformal field theory are applied to show, that the constructed QFT’s are dual to integrable deformation of O(N) sigma-models.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N57db75ada2214a658d3f50506da75dae
    34 N7ee2c3451e794007939b93f0aee74714
    35 sg:journal.1052482
    36 schema:name Integrability, duality and sigma models
    37 schema:pagination 204
    38 schema:productId N71a1f8dec72346729ed2eefd7339074c
    39 Nb2c9500b288c455296b26666cba9e4b8
    40 Nc31b29b4f48e4892bfbeb92e99e63d8a
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580013
    42 https://doi.org/10.1007/jhep11(2018)204
    43 schema:sdDatePublished 2019-04-11T08:23
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N94ce7927db2c4c0792799e92fb79db8d
    46 schema:url https://link.springer.com/10.1007%2FJHEP11%282018%29204
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N099b43a3cb52417bb9865781fe1efc40 rdf:first sg:person.07774620255.02
    51 rdf:rest N5fbecdb6797043f0bfcbd67364170a81
    52 N57db75ada2214a658d3f50506da75dae schema:volumeNumber 2018
    53 rdf:type schema:PublicationVolume
    54 N5d19ce18e98c4f338becac53a7adc50b schema:affiliation https://www.grid.ac/institutes/grid.435025.5
    55 schema:familyName Litvinov
    56 schema:givenName A. V.
    57 rdf:type schema:Person
    58 N5fbecdb6797043f0bfcbd67364170a81 rdf:first N5d19ce18e98c4f338becac53a7adc50b
    59 rdf:rest rdf:nil
    60 N71a1f8dec72346729ed2eefd7339074c schema:name dimensions_id
    61 schema:value pub.1110580013
    62 rdf:type schema:PropertyValue
    63 N7ee2c3451e794007939b93f0aee74714 schema:issueNumber 11
    64 rdf:type schema:PublicationIssue
    65 N94ce7927db2c4c0792799e92fb79db8d schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nb2c9500b288c455296b26666cba9e4b8 schema:name readcube_id
    68 schema:value 636c48773a83ede2eb0a85aa321f4e3dc0d9bb72c199697252f1b5a5bc97cd2f
    69 rdf:type schema:PropertyValue
    70 Nc31b29b4f48e4892bfbeb92e99e63d8a schema:name doi
    71 schema:value 10.1007/jhep11(2018)204
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1052482 schema:issn 1029-8479
    80 1126-6708
    81 schema:name Journal of High Energy Physics
    82 rdf:type schema:Periodical
    83 sg:person.07774620255.02 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
    84 schema:familyName Fateev
    85 schema:givenName V. A.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774620255.02
    87 rdf:type schema:Person
    88 sg:pub.10.1007/jhep04(2014)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027386585
    89 https://doi.org/10.1007/jhep04(2014)002
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/jhep11(2013)192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001630330
    92 https://doi.org/10.1007/jhep11(2013)192
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s11232-008-0038-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023057162
    95 https://doi.org/10.1007/s11232-008-0038-3
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0003-4916(79)90391-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019263166
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0003-4916(85)90384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034879880
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0370-2693(85)90259-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027783323
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0370-2693(90)90686-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029254482
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0370-2693(91)91283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001919583
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0370-2693(94)00078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007824854
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0370-2693(95)00883-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1040727326
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0550-3213(89)90320-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035263875
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0550-3213(93)90001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038721333
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0550-3213(96)00256-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024259342
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.nuclphysb.2015.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053009164
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0370-2693(00)00417-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967604
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0550-3213(98)00525-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035548738
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1088/1742-5468/2004/05/p05003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040373878
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.11.2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060682928
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevd.11.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683042
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevlett.83.4468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004610971
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1142/s0217751x91001052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062929207
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/s0217751x9500053x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062930313
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.3842/sigma.2017.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092224047
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.435025.5 schema:alternateName Institute for Information Transmission Problems
    138 schema:name Kharkevich Institute for Information Transmission Problems, 127994, Moscow, Russia
    139 Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia
    140 rdf:type schema:Organization
    141 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
    142 schema:name Laboratoire Charles Coulomb, Université de Montpellier, 34095, Montpellier, France
    143 Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...