Nonrelativistic string theory and T-duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Eric Bergshoeff, Jaume Gomis, Ziqi Yan

ABSTRACT

Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds. More... »

PAGES

133

References to SciGraph publications

  • 2017-02. Extended Galilean symmetries of non-relativistic strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-05. Remark about non-relativistic string in Newton-Cartan background and null reduction in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12. Dynamics of perturbations in Double Field Theory & non-relativistic string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02. The Galilean superstring in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10. Classification of non-Riemannian doubled-yet-gauged spacetime in THE EUROPEAN PHYSICAL JOURNAL C
  • 2000-10-10. IIA/B, wound and wrapped in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04. Tachyons in the Galilean limit in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-10. Galilean conformal algebras and AdS/CFT in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2018)133

    DOI

    http://dx.doi.org/10.1007/jhep11(2018)133

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110152560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Van Swinderen Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bergshoeff", 
            "givenName": "Eric", 
            "id": "sg:person.015256111017.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256111017.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 6B9, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gomis", 
            "givenName": "Jaume", 
            "id": "sg:person.012017534505.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012017534505.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 6B9, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Ziqi", 
            "id": "sg:person.0640110455.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640110455.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.79.3577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003083964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.3577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003083964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2004.05.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003140939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/10/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015788961", 
              "https://doi.org/10.1088/1126-6708/2000/10/020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.125002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019171783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.125002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019171783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027557693", 
              "https://doi.org/10.1088/1126-6708/2009/07/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027557693", 
              "https://doi.org/10.1088/1126-6708/2009/07/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(87)90769-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033011103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(87)90769-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033011103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.085011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034774219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.085011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034774219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(85)90384-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034879880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1372697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037680135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.5112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043426195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.5112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043426195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90602-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90602-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90506-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046002404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90506-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046002404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90269-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047744547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90269-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047744547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/29/23/235020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049794185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050054530", 
              "https://doi.org/10.1007/jhep12(2015)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050054530", 
              "https://doi.org/10.1007/jhep12(2015)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x01004001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062921764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083743852", 
              "https://doi.org/10.1007/jhep02(2017)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083743852", 
              "https://doi.org/10.1007/jhep02(2017)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083894712", 
              "https://doi.org/10.1007/jhep02(2017)105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083894712", 
              "https://doi.org/10.1007/jhep02(2017)105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085006581", 
              "https://doi.org/10.1007/jhep04(2017)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-017-5257-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092246315", 
              "https://doi.org/10.1140/epjc/s10052-017-5257-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.96.086019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092383130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.96.086019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092383130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2018)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103904195", 
              "https://doi.org/10.1007/jhep05(2018)041"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep11(2018)133", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Nonrelativistic string theory and T-duality", 
        "pagination": "133", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "29a56f4178d520111992f947049822d7c8be327d70a56fe5db36aeace80b5fd4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2018)133"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110152560"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2018)133", 
          "https://app.dimensions.ai/details/publication/pub.1110152560"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000271_0000000271/records_76781_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP11%282018%29133"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)133'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)133'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)133'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2018)133'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2018)133 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbe45a4b3bcbc4c15b5f2ce30479081f6
    4 schema:citation sg:pub.10.1007/jhep02(2017)049
    5 sg:pub.10.1007/jhep02(2017)105
    6 sg:pub.10.1007/jhep04(2017)120
    7 sg:pub.10.1007/jhep05(2018)041
    8 sg:pub.10.1007/jhep12(2015)144
    9 sg:pub.10.1088/1126-6708/2000/10/020
    10 sg:pub.10.1088/1126-6708/2009/07/037
    11 sg:pub.10.1140/epjc/s10052-017-5257-z
    12 https://doi.org/10.1016/0003-4916(85)90384-7
    13 https://doi.org/10.1016/0370-2693(87)90769-6
    14 https://doi.org/10.1016/0370-2693(88)90602-8
    15 https://doi.org/10.1016/0550-3213(85)90506-1
    16 https://doi.org/10.1016/0550-3213(92)90269-h
    17 https://doi.org/10.1016/j.physletb.2004.05.024
    18 https://doi.org/10.1063/1.1372697
    19 https://doi.org/10.1088/0264-9381/29/23/235020
    20 https://doi.org/10.1103/physrevd.55.5112
    21 https://doi.org/10.1103/physrevd.59.125002
    22 https://doi.org/10.1103/physrevd.73.085011
    23 https://doi.org/10.1103/physrevd.96.086019
    24 https://doi.org/10.1103/physrevlett.79.3577
    25 https://doi.org/10.1142/s0217751x01004001
    26 schema:datePublished 2018-11
    27 schema:datePublishedReg 2018-11-01
    28 schema:description Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N1e73550d085043479fc31d3becdabf2b
    33 N46e4751c9e22440bb216988ffcdd2560
    34 sg:journal.1052482
    35 schema:name Nonrelativistic string theory and T-duality
    36 schema:pagination 133
    37 schema:productId N049204d88f0b41b3bff6501857ab91a9
    38 N7fcdf036fb25496b9527b6012b231e56
    39 Nc3b61b002ccc47d781114499061699ac
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110152560
    41 https://doi.org/10.1007/jhep11(2018)133
    42 schema:sdDatePublished 2019-04-11T08:12
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nf4004647d25d430b88dd62e4669915d0
    45 schema:url https://link.springer.com/10.1007%2FJHEP11%282018%29133
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N049204d88f0b41b3bff6501857ab91a9 schema:name doi
    50 schema:value 10.1007/jhep11(2018)133
    51 rdf:type schema:PropertyValue
    52 N1532f31b78b84dd18543ff855f188613 rdf:first sg:person.0640110455.47
    53 rdf:rest rdf:nil
    54 N1e73550d085043479fc31d3becdabf2b schema:volumeNumber 2018
    55 rdf:type schema:PublicationVolume
    56 N46e4751c9e22440bb216988ffcdd2560 schema:issueNumber 11
    57 rdf:type schema:PublicationIssue
    58 N7fcdf036fb25496b9527b6012b231e56 schema:name dimensions_id
    59 schema:value pub.1110152560
    60 rdf:type schema:PropertyValue
    61 Nbe45a4b3bcbc4c15b5f2ce30479081f6 rdf:first sg:person.015256111017.10
    62 rdf:rest Nea40fc5c6b384797aea42f3f7c22f6f1
    63 Nc3b61b002ccc47d781114499061699ac schema:name readcube_id
    64 schema:value 29a56f4178d520111992f947049822d7c8be327d70a56fe5db36aeace80b5fd4
    65 rdf:type schema:PropertyValue
    66 Nea40fc5c6b384797aea42f3f7c22f6f1 rdf:first sg:person.012017534505.47
    67 rdf:rest N1532f31b78b84dd18543ff855f188613
    68 Nf4004647d25d430b88dd62e4669915d0 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Pure Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1052482 schema:issn 1029-8479
    77 1126-6708
    78 schema:name Journal of High Energy Physics
    79 rdf:type schema:Periodical
    80 sg:person.012017534505.47 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    81 schema:familyName Gomis
    82 schema:givenName Jaume
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012017534505.47
    84 rdf:type schema:Person
    85 sg:person.015256111017.10 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    86 schema:familyName Bergshoeff
    87 schema:givenName Eric
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256111017.10
    89 rdf:type schema:Person
    90 sg:person.0640110455.47 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    91 schema:familyName Yan
    92 schema:givenName Ziqi
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640110455.47
    94 rdf:type schema:Person
    95 sg:pub.10.1007/jhep02(2017)049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083743852
    96 https://doi.org/10.1007/jhep02(2017)049
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/jhep02(2017)105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083894712
    99 https://doi.org/10.1007/jhep02(2017)105
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/jhep04(2017)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085006581
    102 https://doi.org/10.1007/jhep04(2017)120
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/jhep05(2018)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103904195
    105 https://doi.org/10.1007/jhep05(2018)041
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/jhep12(2015)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050054530
    108 https://doi.org/10.1007/jhep12(2015)144
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1088/1126-6708/2000/10/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015788961
    111 https://doi.org/10.1088/1126-6708/2000/10/020
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1088/1126-6708/2009/07/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027557693
    114 https://doi.org/10.1088/1126-6708/2009/07/037
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1140/epjc/s10052-017-5257-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092246315
    117 https://doi.org/10.1140/epjc/s10052-017-5257-z
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0003-4916(85)90384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034879880
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0370-2693(87)90769-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011103
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0370-2693(88)90602-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298643
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0550-3213(85)90506-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046002404
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0550-3213(92)90269-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1047744547
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.physletb.2004.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003140939
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1063/1.1372697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037680135
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1088/0264-9381/29/23/235020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049794185
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.55.5112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043426195
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.59.125002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019171783
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.73.085011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034774219
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.96.086019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092383130
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevlett.79.3577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083964
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1142/s0217751x01004001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062921764
    146 rdf:type schema:CreativeWork
    147 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    148 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 6B9, Waterloo, ON, Canada
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    151 schema:name Van Swinderen Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...