8d gauge anomalies and the topological Green-Schwarz mechanism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-27

AUTHORS

Iñaki García-Etxebarria, Hirotaka Hayashi, Kantaro Ohmori, Yuji Tachikawa, Kazuya Yonekura

ABSTRACT

String theory provides us with 8d supersymmetric gauge theory with gauge algebras suN,so2N,spN,e6,e7ande8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{u}(N),\mathfrak{s}\mathfrak{o}(2N),\mathfrak{s}\mathfrak{p}(N),{\mathfrak{e}}_6,{\mathfrak{e}}_7\kern0.5em \mathrm{and}\kern0.5em {\mathfrak{e}}_8 $$\end{document}, but no construction for so2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2N+1\right) $$\end{document}, f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{f}}_4 $$\end{document} and g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{g}}_2 $$\end{document} is known. In this paper, we show that the theories for f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{f}}_4 $$\end{document} and so2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2N+1\right) $$\end{document} have a global gauge anomaly associated to πd=8, while g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{g}}_2 $$\end{document} does not have it. We argue that the anomaly associated to πd in d-dimensional gauge theories cannot be canceled by topological degrees of freedom in general. We also show that the theories for spN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{p}(N) $$\end{document} have a subtler gauge anomaly, which we suggest should be canceled by a topological analogue of the Green-Schwarz mechanism. More... »

PAGES

177

References to SciGraph publications

  • 2010-07-20. Modifying the sum over topological sectors and constraints on supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1989-09. Quantum field theory and the Jones polynomial in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-05-24. Orientifolds, RR torsion, and K-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-09-05. Dai-Freed theorem and topological phases of matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-26. Generalized global symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 1985-06. Global gravitational anomalies in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-08-26. Reading between the lines of four-dimensional gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-12-25. Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-08-29. Orientifold planes, type I Wilson lines and non-BPS D-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 1992. Concise tables of James numbers and some homotopy of classical Lie groups and associated homogeneous spaces in ALGEBRAIC TOPOLOGY HOMOTOPY AND GROUP COHOMOLOGY
  • 2014-04-01. Coupling a QFT to a TQFT and duality in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2017)177

    DOI

    http://dx.doi.org/10.1007/jhep11(2017)177

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1093029392


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Physics, F\u00f6hringer Ring 6, 80805, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.435824.c", 
              "name": [
                "Max Planck Institute for Physics, F\u00f6hringer Ring 6, 80805, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Etxebarria", 
            "givenName": "I\u00f1aki", 
            "id": "sg:person.010644177661.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644177661.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265061.6", 
              "name": [
                "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohmori", 
            "givenName": "Kantaro", 
            "id": "sg:person.010045550074.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045550074.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yonekura", 
            "givenName": "Kazuya", 
            "id": "sg:person.07506765427.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0087515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002635186", 
              "https://doi.org/10.1007/bfb0087515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/05/047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001870422", 
              "https://doi.org/10.1088/1126-6708/2001/05/047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023529369", 
              "https://doi.org/10.1007/jhep04(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019197655", 
              "https://doi.org/10.1007/jhep08(2013)115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0975-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047000245", 
              "https://doi.org/10.1007/s00220-009-0975-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2010)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436205", 
              "https://doi.org/10.1007/jhep07(2010)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035951", 
              "https://doi.org/10.1007/bf01217730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01212448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042731244", 
              "https://doi.org/10.1007/bf01212448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2016)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052581189", 
              "https://doi.org/10.1007/jhep09(2016)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045360529", 
              "https://doi.org/10.1007/jhep02(2015)172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/08/043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013604808", 
              "https://doi.org/10.1088/1126-6708/2000/08/043"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11-27", 
        "datePublishedReg": "2017-11-27", 
        "description": "String theory provides us with 8d supersymmetric gauge theory with gauge algebras suN,so2N,spN,e6,e7ande8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{s}\\mathfrak{u}(N),\\mathfrak{s}\\mathfrak{o}(2N),\\mathfrak{s}\\mathfrak{p}(N),{\\mathfrak{e}}_6,{\\mathfrak{e}}_7\\kern0.5em \\mathrm{and}\\kern0.5em {\\mathfrak{e}}_8 $$\\end{document}, but no construction for so2N+1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{so}\\left(2N+1\\right) $$\\end{document}, f4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathfrak{f}}_4 $$\\end{document} and g2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathfrak{g}}_2 $$\\end{document} is known. In this paper, we show that the theories for f4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathfrak{f}}_4 $$\\end{document} and so2N+1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{so}\\left(2N+1\\right) $$\\end{document} have a global gauge anomaly associated to \u03c0d=8, while g2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathfrak{g}}_2 $$\\end{document} does not have it. We argue that the anomaly associated to \u03c0d in d-dimensional gauge theories cannot be canceled by topological degrees of freedom in general. We also show that the theories for spN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{s}\\mathfrak{p}(N) $$\\end{document} have a subtler gauge anomaly, which we suggest should be canceled by a topological analogue of the Green-Schwarz mechanism.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep11(2017)177", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6839687", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6822758", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6535799", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "Green-Schwarz mechanism", 
          "gauge theory", 
          "gauge anomalies", 
          "dimensional gauge theories", 
          "supersymmetric gauge theories", 
          "string theory", 
          "topological degree", 
          "topological analogue", 
          "global gauge anomaly", 
          "theory", 
          "SO2n", 
          "freedom", 
          "construction", 
          "\u03c0d", 
          "analogues", 
          "degree", 
          "anomalies", 
          "Sun", 
          "mechanism", 
          "paper", 
          "gauge algebras suN", 
          "algebras suN", 
          "subtler gauge anomaly", 
          "topological Green-Schwarz mechanism"
        ], 
        "name": "8d gauge anomalies and the topological Green-Schwarz mechanism", 
        "pagination": "177", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1093029392"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2017)177"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2017)177", 
          "https://app.dimensions.ai/details/publication/pub.1093029392"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_750.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep11(2017)177"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)177'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)177'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)177'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)177'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      22 PREDICATES      60 URIs      41 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2017)177 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N35ea65819994493c9a4adfdf7f8c805d
    4 schema:citation sg:pub.10.1007/bf01212448
    5 sg:pub.10.1007/bf01217730
    6 sg:pub.10.1007/bfb0087515
    7 sg:pub.10.1007/jhep02(2015)172
    8 sg:pub.10.1007/jhep04(2014)001
    9 sg:pub.10.1007/jhep07(2010)070
    10 sg:pub.10.1007/jhep08(2013)115
    11 sg:pub.10.1007/jhep09(2016)022
    12 sg:pub.10.1007/s00220-009-0975-1
    13 sg:pub.10.1088/1126-6708/2000/08/043
    14 sg:pub.10.1088/1126-6708/2001/05/047
    15 schema:datePublished 2017-11-27
    16 schema:datePublishedReg 2017-11-27
    17 schema:description String theory provides us with 8d supersymmetric gauge theory with gauge algebras suN,so2N,spN,e6,e7ande8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{u}(N),\mathfrak{s}\mathfrak{o}(2N),\mathfrak{s}\mathfrak{p}(N),{\mathfrak{e}}_6,{\mathfrak{e}}_7\kern0.5em \mathrm{and}\kern0.5em {\mathfrak{e}}_8 $$\end{document}, but no construction for so2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2N+1\right) $$\end{document}, f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{f}}_4 $$\end{document} and g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{g}}_2 $$\end{document} is known. In this paper, we show that the theories for f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{f}}_4 $$\end{document} and so2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2N+1\right) $$\end{document} have a global gauge anomaly associated to πd=8, while g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{g}}_2 $$\end{document} does not have it. We argue that the anomaly associated to πd in d-dimensional gauge theories cannot be canceled by topological degrees of freedom in general. We also show that the theories for spN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{p}(N) $$\end{document} have a subtler gauge anomaly, which we suggest should be canceled by a topological analogue of the Green-Schwarz mechanism.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N89f629663a4f406887821390224fe53b
    22 Ne8008068829b4fbca19963978461dfe9
    23 sg:journal.1052482
    24 schema:keywords Green-Schwarz mechanism
    25 SO2n
    26 Sun
    27 algebras suN
    28 analogues
    29 anomalies
    30 construction
    31 degree
    32 dimensional gauge theories
    33 freedom
    34 gauge algebras suN
    35 gauge anomalies
    36 gauge theory
    37 global gauge anomaly
    38 mechanism
    39 paper
    40 string theory
    41 subtler gauge anomaly
    42 supersymmetric gauge theories
    43 theory
    44 topological Green-Schwarz mechanism
    45 topological analogue
    46 topological degree
    47 πd
    48 schema:name 8d gauge anomalies and the topological Green-Schwarz mechanism
    49 schema:pagination 177
    50 schema:productId Na161b18f99df41bf8b614221ce9e1cab
    51 Nf72167c5555b4cce91176b7579899977
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093029392
    53 https://doi.org/10.1007/jhep11(2017)177
    54 schema:sdDatePublished 2022-01-01T18:45
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nd4f9e8465bdf4eaf87ba77c9c0a7ee0e
    57 schema:url https://doi.org/10.1007/jhep11(2017)177
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N35ea65819994493c9a4adfdf7f8c805d rdf:first sg:person.010644177661.01
    62 rdf:rest Nc1bd396f0ea44d08823e6821147c58f0
    63 N3f761e1c0ab34b44ad5d7029daade97d rdf:first sg:person.010045550074.03
    64 rdf:rest N756325c6b5844706b6f8bbb886954366
    65 N756325c6b5844706b6f8bbb886954366 rdf:first sg:person.010520672276.19
    66 rdf:rest Naa925fc411b04fdcb2f2f921dd862bdb
    67 N89f629663a4f406887821390224fe53b schema:issueNumber 11
    68 rdf:type schema:PublicationIssue
    69 Na161b18f99df41bf8b614221ce9e1cab schema:name doi
    70 schema:value 10.1007/jhep11(2017)177
    71 rdf:type schema:PropertyValue
    72 Naa925fc411b04fdcb2f2f921dd862bdb rdf:first sg:person.07506765427.69
    73 rdf:rest rdf:nil
    74 Nc1bd396f0ea44d08823e6821147c58f0 rdf:first sg:person.012413203443.40
    75 rdf:rest N3f761e1c0ab34b44ad5d7029daade97d
    76 Nd4f9e8465bdf4eaf87ba77c9c0a7ee0e schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Ne8008068829b4fbca19963978461dfe9 schema:volumeNumber 2017
    79 rdf:type schema:PublicationVolume
    80 Nf72167c5555b4cce91176b7579899977 schema:name dimensions_id
    81 schema:value pub.1093029392
    82 rdf:type schema:PropertyValue
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Pure Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:grant.6535799 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)177
    90 rdf:type schema:MonetaryGrant
    91 sg:grant.6822758 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)177
    92 rdf:type schema:MonetaryGrant
    93 sg:grant.6839687 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)177
    94 rdf:type schema:MonetaryGrant
    95 sg:journal.1052482 schema:issn 1029-8479
    96 1126-6708
    97 schema:name Journal of High Energy Physics
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.010045550074.03 schema:affiliation grid-institutes:grid.78989.37
    101 schema:familyName Ohmori
    102 schema:givenName Kantaro
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045550074.03
    104 rdf:type schema:Person
    105 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.440880.0
    106 schema:familyName Tachikawa
    107 schema:givenName Yuji
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    109 rdf:type schema:Person
    110 sg:person.010644177661.01 schema:affiliation grid-institutes:grid.435824.c
    111 schema:familyName García-Etxebarria
    112 schema:givenName Iñaki
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644177661.01
    114 rdf:type schema:Person
    115 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.265061.6
    116 schema:familyName Hayashi
    117 schema:givenName Hirotaka
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    119 rdf:type schema:Person
    120 sg:person.07506765427.69 schema:affiliation grid-institutes:grid.440880.0
    121 schema:familyName Yonekura
    122 schema:givenName Kazuya
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69
    124 rdf:type schema:Person
    125 sg:pub.10.1007/bf01212448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042731244
    126 https://doi.org/10.1007/bf01212448
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01217730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035951
    129 https://doi.org/10.1007/bf01217730
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bfb0087515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002635186
    132 https://doi.org/10.1007/bfb0087515
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep02(2015)172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045360529
    135 https://doi.org/10.1007/jhep02(2015)172
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep04(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529369
    138 https://doi.org/10.1007/jhep04(2014)001
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep07(2010)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436205
    141 https://doi.org/10.1007/jhep07(2010)070
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep08(2013)115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019197655
    144 https://doi.org/10.1007/jhep08(2013)115
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep09(2016)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052581189
    147 https://doi.org/10.1007/jhep09(2016)022
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00220-009-0975-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047000245
    150 https://doi.org/10.1007/s00220-009-0975-1
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2000/08/043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013604808
    153 https://doi.org/10.1088/1126-6708/2000/08/043
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1088/1126-6708/2001/05/047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001870422
    156 https://doi.org/10.1088/1126-6708/2001/05/047
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.265061.6 schema:alternateName Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    159 schema:name Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    160 rdf:type schema:Organization
    161 grid-institutes:grid.435824.c schema:alternateName Max Planck Institute for Physics, Föhringer Ring 6, 80805, Munich, Germany
    162 schema:name Max Planck Institute for Physics, Föhringer Ring 6, 80805, Munich, Germany
    163 rdf:type schema:Organization
    164 grid-institutes:grid.440880.0 schema:alternateName Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    165 schema:name Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    166 rdf:type schema:Organization
    167 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A.
    168 schema:name School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A.
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...