Quiver theories and formulae for nilpotent orbits of Exceptional algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-21

AUTHORS

Amihay Hanany, Rudolph Kalveks

ABSTRACT

We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras. More... »

PAGES

126

References to SciGraph publications

  • 1982. Classes Unipotentes et Sous-groupes de Borel in NONE
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07-13. Counting exceptional instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 1989-02. Rings of regular functions on nilpotent orbits and their covers in INVENTIONES MATHEMATICAE
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-06. Algebraic properties of the monopole formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 1978-10. Polarizations in the classical groups in MATHEMATISCHE ZEITSCHRIFT
  • 2016-10-05. Highest weight generating functions for hyperKähler T⋆(G/H) spaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-15. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-01. Symplectic resolutions for nilpotent orbits in INVENTIONES MATHEMATICAE
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2017)126

    DOI

    http://dx.doi.org/10.1007/jhep11(2017)126

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092891163


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalveks", 
            "givenName": "Rudolph", 
            "id": "sg:person.014000413552.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00222-002-0260-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050321688", 
              "https://doi.org/10.1007/s00222-002-0260-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01850661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728303", 
              "https://doi.org/10.1007/bf01850661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01237035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052704641", 
              "https://doi.org/10.1007/bf01237035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540457", 
              "https://doi.org/10.1007/bfb0096302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048280868", 
              "https://doi.org/10.1007/jhep07(2012)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036633209", 
              "https://doi.org/10.1007/jhep10(2016)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11-21", 
        "datePublishedReg": "2017-11-21", 
        "description": "We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep11(2017)126", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "nilpotent orbits", 
          "moduli space", 
          "exceptional algebras", 
          "Lie algebra", 
          "Hilbert series", 
          "exceptional groups", 
          "minimal nilpotent orbit", 
          "instanton moduli space", 
          "extended Dynkin diagram", 
          "Hall\u2013Littlewood polynomials", 
          "Dynkin diagram", 
          "irreducible representations", 
          "Coulomb branch", 
          "generating function", 
          "algebra", 
          "quiver theories", 
          "monopole formula", 
          "representation content", 
          "theoretic formula", 
          "orbit", 
          "height 2", 
          "Littlewood polynomials", 
          "formula", 
          "space", 
          "theory construction", 
          "localisation method", 
          "polynomials", 
          "theory", 
          "terms", 
          "function", 
          "diagram", 
          "representation", 
          "higher weight", 
          "construction", 
          "description", 
          "set", 
          "decomposition", 
          "branches", 
          "series", 
          "topic", 
          "character", 
          "candidates", 
          "closure", 
          "weight", 
          "relationship", 
          "group", 
          "content", 
          "method"
        ], 
        "name": "Quiver theories and formulae for nilpotent orbits of Exceptional algebras", 
        "pagination": "126", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092891163"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2017)126"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2017)126", 
          "https://app.dimensions.ai/details/publication/pub.1092891163"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_737.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep11(2017)126"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      21 PREDICATES      93 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2017)126 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2dd7215b888a4b40b716a7cd4710a8ac
    4 schema:citation sg:pub.10.1007/bf01237035
    5 sg:pub.10.1007/bf01850661
    6 sg:pub.10.1007/bf02565876
    7 sg:pub.10.1007/bfb0096302
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2015)150
    10 sg:pub.10.1007/jhep02(2017)023
    11 sg:pub.10.1007/jhep03(2012)045
    12 sg:pub.10.1007/jhep06(2016)130
    13 sg:pub.10.1007/jhep07(2012)085
    14 sg:pub.10.1007/jhep09(2014)178
    15 sg:pub.10.1007/jhep09(2014)185
    16 sg:pub.10.1007/jhep10(2014)152
    17 sg:pub.10.1007/jhep10(2016)021
    18 sg:pub.10.1007/jhep12(2014)103
    19 sg:pub.10.1007/jhep12(2015)118
    20 sg:pub.10.1007/s00222-002-0260-9
    21 sg:pub.10.1088/1126-6708/2002/12/044
    22 sg:pub.10.1088/1126-6708/2007/03/090
    23 sg:pub.10.1088/1126-6708/2007/11/050
    24 sg:pub.10.1088/1126-6708/2008/05/099
    25 schema:datePublished 2017-11-21
    26 schema:datePublishedReg 2017-11-21
    27 schema:description We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N6611451773904e42948912ce92b6f3b8
    31 Nef559aa5627e40ddb17e3b1a97bd324c
    32 sg:journal.1052482
    33 schema:keywords Coulomb branch
    34 Dynkin diagram
    35 Hall–Littlewood polynomials
    36 Hilbert series
    37 Lie algebra
    38 Littlewood polynomials
    39 algebra
    40 branches
    41 candidates
    42 character
    43 closure
    44 construction
    45 content
    46 decomposition
    47 description
    48 diagram
    49 exceptional algebras
    50 exceptional groups
    51 extended Dynkin diagram
    52 formula
    53 function
    54 generating function
    55 group
    56 height 2
    57 higher weight
    58 instanton moduli space
    59 irreducible representations
    60 localisation method
    61 method
    62 minimal nilpotent orbit
    63 moduli space
    64 monopole formula
    65 nilpotent orbits
    66 orbit
    67 polynomials
    68 quiver theories
    69 relationship
    70 representation
    71 representation content
    72 series
    73 set
    74 space
    75 terms
    76 theoretic formula
    77 theory
    78 theory construction
    79 topic
    80 weight
    81 schema:name Quiver theories and formulae for nilpotent orbits of Exceptional algebras
    82 schema:pagination 126
    83 schema:productId N266dce015d914b36b5ebbf18b8695150
    84 Nbb15885fa91148019576d41f188c8618
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    86 https://doi.org/10.1007/jhep11(2017)126
    87 schema:sdDatePublished 2022-09-02T16:00
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N4e7df3ca364d415eae5701f4fb81cbb1
    90 schema:url https://doi.org/10.1007/jhep11(2017)126
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N266dce015d914b36b5ebbf18b8695150 schema:name doi
    95 schema:value 10.1007/jhep11(2017)126
    96 rdf:type schema:PropertyValue
    97 N2dd7215b888a4b40b716a7cd4710a8ac rdf:first sg:person.012155553275.80
    98 rdf:rest N56402c43d5a54d518fba5a8a52720562
    99 N4e7df3ca364d415eae5701f4fb81cbb1 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N56402c43d5a54d518fba5a8a52720562 rdf:first sg:person.014000413552.15
    102 rdf:rest rdf:nil
    103 N6611451773904e42948912ce92b6f3b8 schema:issueNumber 11
    104 rdf:type schema:PublicationIssue
    105 Nbb15885fa91148019576d41f188c8618 schema:name dimensions_id
    106 schema:value pub.1092891163
    107 rdf:type schema:PropertyValue
    108 Nef559aa5627e40ddb17e3b1a97bd324c schema:volumeNumber 2017
    109 rdf:type schema:PublicationVolume
    110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Mathematical Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Pure Mathematics
    115 rdf:type schema:DefinedTerm
    116 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    117 rdf:type schema:MonetaryGrant
    118 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    119 rdf:type schema:MonetaryGrant
    120 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    121 rdf:type schema:MonetaryGrant
    122 sg:journal.1052482 schema:issn 1029-8479
    123 1126-6708
    124 schema:name Journal of High Energy Physics
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    128 schema:familyName Hanany
    129 schema:givenName Amihay
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    131 rdf:type schema:Person
    132 sg:person.014000413552.15 schema:affiliation grid-institutes:grid.7445.2
    133 schema:familyName Kalveks
    134 schema:givenName Rudolph
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15
    136 rdf:type schema:Person
    137 sg:pub.10.1007/bf01237035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052704641
    138 https://doi.org/10.1007/bf01237035
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf01850661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728303
    141 https://doi.org/10.1007/bf01850661
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    144 https://doi.org/10.1007/bf02565876
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
    147 https://doi.org/10.1007/bfb0096302
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    150 https://doi.org/10.1007/jhep01(2014)005
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    153 https://doi.org/10.1007/jhep01(2015)150
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    156 https://doi.org/10.1007/jhep02(2017)023
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    159 https://doi.org/10.1007/jhep03(2012)045
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    162 https://doi.org/10.1007/jhep06(2016)130
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep07(2012)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048280868
    165 https://doi.org/10.1007/jhep07(2012)085
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    168 https://doi.org/10.1007/jhep09(2014)178
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    171 https://doi.org/10.1007/jhep09(2014)185
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    174 https://doi.org/10.1007/jhep10(2014)152
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep10(2016)021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036633209
    177 https://doi.org/10.1007/jhep10(2016)021
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    180 https://doi.org/10.1007/jhep12(2014)103
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    183 https://doi.org/10.1007/jhep12(2015)118
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00222-002-0260-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050321688
    186 https://doi.org/10.1007/s00222-002-0260-9
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    189 https://doi.org/10.1088/1126-6708/2002/12/044
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    192 https://doi.org/10.1088/1126-6708/2007/03/090
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    195 https://doi.org/10.1088/1126-6708/2007/11/050
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    198 https://doi.org/10.1088/1126-6708/2008/05/099
    199 rdf:type schema:CreativeWork
    200 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom
    201 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...