Quiver theories and formulae for nilpotent orbits of Exceptional algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Amihay Hanany, Rudolph Kalveks

ABSTRACT

We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras. More... »

PAGES

126

References to SciGraph publications

  • 1982. Classes Unipotentes et Sous-groupes de Borel in NONE
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2015-01. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07. Counting exceptional instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 1989-02. Rings of regular functions on nilpotent orbits and their covers in INVENTIONES MATHEMATICAE
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02. Algebraic properties of the monopole formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 1978-10. Polarizations in the classical groups in MATHEMATISCHE ZEITSCHRIFT
  • 2016-10. Highest weight generating functions for hyperKähler T⋆(G/H) spaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-01. Symplectic resolutions for nilpotent orbits in INVENTIONES MATHEMATICAE
  • 2014-09. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2017)126

    DOI

    http://dx.doi.org/10.1007/jhep11(2017)126

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092891163


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalveks", 
            "givenName": "Rudolph", 
            "id": "sg:person.014000413552.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(78)90045-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004911561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(84)90084-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010310442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2016.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010359512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1994-1239505-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015110282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01850661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728303", 
              "https://doi.org/10.1007/bf01850661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020399525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020399525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540457", 
              "https://doi.org/10.1007/bfb0096302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540457", 
              "https://doi.org/10.1007/bfb0096302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036633209", 
              "https://doi.org/10.1007/jhep10(2016)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036633209", 
              "https://doi.org/10.1007/jhep10(2016)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048280868", 
              "https://doi.org/10.1007/jhep07(2012)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(96)01088-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049623391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-002-0260-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050321688", 
              "https://doi.org/10.1007/s00222-002-0260-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01237035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052704641", 
              "https://doi.org/10.1007/bf01237035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01237035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052704641", 
              "https://doi.org/10.1007/bf01237035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100052403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053859334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100052610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053876032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x1340006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062927113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1998-048-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072268005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11", 
        "datePublishedReg": "2017-11-01", 
        "description": "We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep11(2017)126", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "name": "Quiver theories and formulae for nilpotent orbits of Exceptional algebras", 
        "pagination": "126", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1c7ab462d76948a09488ec4bd6778a431b3b112b26566581942a62c832987ec5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2017)126"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092891163"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2017)126", 
          "https://app.dimensions.ai/details/publication/pub.1092891163"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP11(2017)126"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)126'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2017)126 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N38f2a6f8c94e4302aebc38ace913daaf
    4 schema:citation sg:pub.10.1007/bf01237035
    5 sg:pub.10.1007/bf01850661
    6 sg:pub.10.1007/bf02565876
    7 sg:pub.10.1007/bfb0096302
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2015)150
    10 sg:pub.10.1007/jhep02(2017)023
    11 sg:pub.10.1007/jhep03(2012)045
    12 sg:pub.10.1007/jhep06(2016)130
    13 sg:pub.10.1007/jhep07(2012)085
    14 sg:pub.10.1007/jhep09(2014)178
    15 sg:pub.10.1007/jhep09(2014)185
    16 sg:pub.10.1007/jhep10(2014)152
    17 sg:pub.10.1007/jhep10(2016)021
    18 sg:pub.10.1007/jhep12(2014)103
    19 sg:pub.10.1007/jhep12(2015)118
    20 sg:pub.10.1007/s00222-002-0260-9
    21 sg:pub.10.1088/1126-6708/2002/12/044
    22 sg:pub.10.1088/1126-6708/2007/03/090
    23 sg:pub.10.1088/1126-6708/2007/11/050
    24 sg:pub.10.1088/1126-6708/2008/05/099
    25 https://doi.org/10.1016/0001-8708(78)90045-2
    26 https://doi.org/10.1016/0021-8693(84)90084-x
    27 https://doi.org/10.1016/0370-2693(96)01088-x
    28 https://doi.org/10.1016/0550-3213(77)90221-8
    29 https://doi.org/10.1016/j.aim.2016.09.010
    30 https://doi.org/10.1017/s0305004100052403
    31 https://doi.org/10.1017/s0305004100052610
    32 https://doi.org/10.1090/s0894-0347-1994-1239505-8
    33 https://doi.org/10.1142/s0217751x1340006x
    34 https://doi.org/10.4153/cjm-1998-048-6
    35 https://doi.org/10.4310/atmp.2009.v13.n3.a5
    36 schema:datePublished 2017-11
    37 schema:datePublishedReg 2017-11-01
    38 schema:description We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content. We extend the set of known Coulomb branch quiver theory constructions for Exceptional group minimal nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Characteristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula. We also present a representation theoretic formula, based on localisation methods, for the normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We analyse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. We investigate the relationships between the moduli spaces describing different nilpotent orbits and propose candidates for the constructions of some non-normal nilpotent orbits of Exceptional algebras.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf Nad6a6d8832b84cc8ac42cf3680e6dd80
    43 Nd2f5c258d28645b2abb26e6aa37c206d
    44 sg:journal.1052482
    45 schema:name Quiver theories and formulae for nilpotent orbits of Exceptional algebras
    46 schema:pagination 126
    47 schema:productId N167d7473ba8d48afbc5f9b242ea71ae4
    48 N66bbade394124118b3e359044259f080
    49 Nd812a3ce4f2148d6b99db9862ddc97d0
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    51 https://doi.org/10.1007/jhep11(2017)126
    52 schema:sdDatePublished 2019-04-11T01:55
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Nec9222bc67654a34ad3427041d21773f
    55 schema:url http://link.springer.com/10.1007/JHEP11(2017)126
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N167d7473ba8d48afbc5f9b242ea71ae4 schema:name readcube_id
    60 schema:value 1c7ab462d76948a09488ec4bd6778a431b3b112b26566581942a62c832987ec5
    61 rdf:type schema:PropertyValue
    62 N38f2a6f8c94e4302aebc38ace913daaf rdf:first sg:person.012155553275.80
    63 rdf:rest Nb2c907e4554e4ee896caaf65b30aa1d4
    64 N66bbade394124118b3e359044259f080 schema:name dimensions_id
    65 schema:value pub.1092891163
    66 rdf:type schema:PropertyValue
    67 Nad6a6d8832b84cc8ac42cf3680e6dd80 schema:issueNumber 11
    68 rdf:type schema:PublicationIssue
    69 Nb2c907e4554e4ee896caaf65b30aa1d4 rdf:first sg:person.014000413552.15
    70 rdf:rest rdf:nil
    71 Nd2f5c258d28645b2abb26e6aa37c206d schema:volumeNumber 2017
    72 rdf:type schema:PublicationVolume
    73 Nd812a3ce4f2148d6b99db9862ddc97d0 schema:name doi
    74 schema:value 10.1007/jhep11(2017)126
    75 rdf:type schema:PropertyValue
    76 Nec9222bc67654a34ad3427041d21773f schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    85 rdf:type schema:MonetaryGrant
    86 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    87 rdf:type schema:MonetaryGrant
    88 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)126
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1052482 schema:issn 1029-8479
    91 1126-6708
    92 schema:name Journal of High Energy Physics
    93 rdf:type schema:Periodical
    94 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    95 schema:familyName Hanany
    96 schema:givenName Amihay
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    98 rdf:type schema:Person
    99 sg:person.014000413552.15 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    100 schema:familyName Kalveks
    101 schema:givenName Rudolph
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15
    103 rdf:type schema:Person
    104 sg:pub.10.1007/bf01237035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052704641
    105 https://doi.org/10.1007/bf01237035
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01850661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728303
    108 https://doi.org/10.1007/bf01850661
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    111 https://doi.org/10.1007/bf02565876
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
    114 https://doi.org/10.1007/bfb0096302
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    117 https://doi.org/10.1007/jhep01(2014)005
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    120 https://doi.org/10.1007/jhep01(2015)150
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    123 https://doi.org/10.1007/jhep02(2017)023
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    126 https://doi.org/10.1007/jhep03(2012)045
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    129 https://doi.org/10.1007/jhep06(2016)130
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep07(2012)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048280868
    132 https://doi.org/10.1007/jhep07(2012)085
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    135 https://doi.org/10.1007/jhep09(2014)178
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    138 https://doi.org/10.1007/jhep09(2014)185
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    141 https://doi.org/10.1007/jhep10(2014)152
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep10(2016)021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036633209
    144 https://doi.org/10.1007/jhep10(2016)021
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    147 https://doi.org/10.1007/jhep12(2014)103
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    150 https://doi.org/10.1007/jhep12(2015)118
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s00222-002-0260-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050321688
    153 https://doi.org/10.1007/s00222-002-0260-9
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    156 https://doi.org/10.1088/1126-6708/2002/12/044
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    159 https://doi.org/10.1088/1126-6708/2007/03/090
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    162 https://doi.org/10.1088/1126-6708/2007/11/050
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    165 https://doi.org/10.1088/1126-6708/2008/05/099
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0001-8708(78)90045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004911561
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0021-8693(84)90084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010310442
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/0370-2693(96)01088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623391
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0550-3213(77)90221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399525
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.aim.2016.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010359512
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1017/s0305004100052403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053859334
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1017/s0305004100052610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053876032
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1090/s0894-0347-1994-1239505-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015110282
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1142/s0217751x1340006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062927113
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.4153/cjm-1998-048-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072268005
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    190 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...