Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-14

AUTHORS

Santiago Cabrera, Amihay Hanany, Zhenghao Zhong

ABSTRACT

Coulomb branches of a set of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(n) $$\end{document}. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(3) $$\end{document} to so10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(10) $$\end{document} which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{A}\left({\mathcal{O}}_{\lambda}\right) $$\end{document} of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{Z}}_2 $$\end{document} group. More... »

PAGES

79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep11(2017)079

DOI

http://dx.doi.org/10.1007/jhep11(2017)079

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092691109


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cabrera", 
        "givenName": "Santiago", 
        "id": "sg:person.015574474365.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Zhenghao", 
        "id": "sg:person.014651311720.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377219", 
          "https://doi.org/10.1007/jhep06(2016)130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0096302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029540457", 
          "https://doi.org/10.1007/bfb0096302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004476555", 
          "https://doi.org/10.1007/jhep01(2014)005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050815107", 
          "https://doi.org/10.1007/bf01389764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885179", 
          "https://doi.org/10.1007/jhep11(2016)175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2017)023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083698145", 
          "https://doi.org/10.1007/jhep02(2017)023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048031409", 
          "https://doi.org/10.1007/jhep01(2015)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656476", 
          "https://doi.org/10.1088/1126-6708/2007/03/090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024992501", 
          "https://doi.org/10.1088/1126-6708/2000/11/033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2010)063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424522", 
          "https://doi.org/10.1007/jhep09(2010)063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-14", 
    "datePublishedReg": "2017-11-14", 
    "description": "Coulomb branches of a set of 3dN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{so}(n) $$\\end{document}. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of T\u03c3(SO(n)\u2228) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{so}(3) $$\\end{document} to so10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathfrak{so}(10) $$\\end{document} which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig\u2019s Canonical QuotientA\u00afO\u03bb\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{A}\\left({\\mathcal{O}}_{\\lambda}\\right) $$\\end{document} of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a \u21242\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathbb{Z}}_2 $$\\end{document} group.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/jhep11(2017)079", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6502537", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "keywords": [
      "nilpotent orbits", 
      "gauge group factors", 
      "Coulomb branch", 
      "gauge theory", 
      "orientifold planes", 
      "gauge group", 
      "quantum field theory", 
      "low-energy dynamics", 
      "supersymmetric gauge theories", 
      "effective gauge theory", 
      "string theory", 
      "field theory", 
      "magnetic lattice", 
      "Hilbert series", 
      "monopole formula", 
      "brane configurations", 
      "diagonal action", 
      "energy dynamics", 
      "orbit", 
      "theory", 
      "SO/", 
      "algebra", 
      "point of view", 
      "Canonical", 
      "plane", 
      "lattice", 
      "group factors", 
      "formula", 
      "dynamics", 
      "branches", 
      "problem", 
      "set", 
      "point", 
      "configuration", 
      "order", 
      "new way", 
      "new relationships", 
      "orthogonal factors", 
      "results", 
      "choice", 
      "way", 
      "presence", 
      "series", 
      "view", 
      "questions", 
      "closure", 
      "factors", 
      "action", 
      "relationship", 
      "group"
    ], 
    "name": "Nilpotent orbits and the Coulomb branch of T\u03c3(G) theories: special orthogonal vs orthogonal gauge group factors", 
    "pagination": "79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092691109"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep11(2017)079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep11(2017)079", 
      "https://app.dimensions.ai/details/publication/pub.1092691109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/jhep11(2017)079"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      84 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep11(2017)079 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N55b0c60f09ff4d4082c0824217513c00
4 schema:citation sg:pub.10.1007/bf01389764
5 sg:pub.10.1007/bfb0096302
6 sg:pub.10.1007/jhep01(2014)005
7 sg:pub.10.1007/jhep01(2015)150
8 sg:pub.10.1007/jhep02(2017)023
9 sg:pub.10.1007/jhep06(2016)130
10 sg:pub.10.1007/jhep09(2010)063
11 sg:pub.10.1007/jhep11(2016)175
12 sg:pub.10.1088/1126-6708/2000/11/033
13 sg:pub.10.1088/1126-6708/2007/03/090
14 schema:datePublished 2017-11-14
15 schema:datePublishedReg 2017-11-14
16 schema:description Coulomb branches of a set of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(n) $$\end{document}. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(3) $$\end{document} to so10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}(10) $$\end{document} which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{A}\left({\mathcal{O}}_{\lambda}\right) $$\end{document} of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{Z}}_2 $$\end{document} group.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N2ccf47c060aa4e00a5b706d09d73fe6a
20 Ne4f82e24a4d5451699e44093799f4cf6
21 sg:journal.1052482
22 schema:keywords Canonical
23 Coulomb branch
24 Hilbert series
25 SO/
26 action
27 algebra
28 branches
29 brane configurations
30 choice
31 closure
32 configuration
33 diagonal action
34 dynamics
35 effective gauge theory
36 energy dynamics
37 factors
38 field theory
39 formula
40 gauge group
41 gauge group factors
42 gauge theory
43 group
44 group factors
45 lattice
46 low-energy dynamics
47 magnetic lattice
48 monopole formula
49 new relationships
50 new way
51 nilpotent orbits
52 orbit
53 order
54 orientifold planes
55 orthogonal factors
56 plane
57 point
58 point of view
59 presence
60 problem
61 quantum field theory
62 questions
63 relationship
64 results
65 series
66 set
67 string theory
68 supersymmetric gauge theories
69 theory
70 view
71 way
72 schema:name Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors
73 schema:pagination 79
74 schema:productId N07e4811ba99a45c394af2e7296438c57
75 N35dd369196174bb686055049dd60d412
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
77 https://doi.org/10.1007/jhep11(2017)079
78 schema:sdDatePublished 2022-09-02T16:01
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N461806d07ca44916a3475d48bb89b2f4
81 schema:url https://doi.org/10.1007/jhep11(2017)079
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N03ec4c358cd8488a8ca8a193b698bb6c rdf:first sg:person.014651311720.05
86 rdf:rest rdf:nil
87 N07e4811ba99a45c394af2e7296438c57 schema:name doi
88 schema:value 10.1007/jhep11(2017)079
89 rdf:type schema:PropertyValue
90 N2ccf47c060aa4e00a5b706d09d73fe6a schema:volumeNumber 2017
91 rdf:type schema:PublicationVolume
92 N35dd369196174bb686055049dd60d412 schema:name dimensions_id
93 schema:value pub.1092691109
94 rdf:type schema:PropertyValue
95 N3a22dfcd15d44f0387d1088fd280ddb0 rdf:first sg:person.012155553275.80
96 rdf:rest N03ec4c358cd8488a8ca8a193b698bb6c
97 N461806d07ca44916a3475d48bb89b2f4 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N55b0c60f09ff4d4082c0824217513c00 rdf:first sg:person.015574474365.83
100 rdf:rest N3a22dfcd15d44f0387d1088fd280ddb0
101 Ne4f82e24a4d5451699e44093799f4cf6 schema:issueNumber 11
102 rdf:type schema:PublicationIssue
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
107 schema:name Pure Mathematics
108 rdf:type schema:DefinedTerm
109 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
110 rdf:type schema:MonetaryGrant
111 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
112 rdf:type schema:MonetaryGrant
113 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
114 rdf:type schema:MonetaryGrant
115 sg:journal.1052482 schema:issn 1029-8479
116 1126-6708
117 schema:name Journal of High Energy Physics
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
121 schema:familyName Hanany
122 schema:givenName Amihay
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
124 rdf:type schema:Person
125 sg:person.014651311720.05 schema:affiliation grid-institutes:grid.7445.2
126 schema:familyName Zhong
127 schema:givenName Zhenghao
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05
129 rdf:type schema:Person
130 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
131 schema:familyName Cabrera
132 schema:givenName Santiago
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
134 rdf:type schema:Person
135 sg:pub.10.1007/bf01389764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815107
136 https://doi.org/10.1007/bf01389764
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
139 https://doi.org/10.1007/bfb0096302
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
142 https://doi.org/10.1007/jhep01(2014)005
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
145 https://doi.org/10.1007/jhep01(2015)150
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
148 https://doi.org/10.1007/jhep02(2017)023
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
151 https://doi.org/10.1007/jhep06(2016)130
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
154 https://doi.org/10.1007/jhep09(2010)063
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
157 https://doi.org/10.1007/jhep11(2016)175
158 rdf:type schema:CreativeWork
159 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
160 https://doi.org/10.1088/1126-6708/2000/11/033
161 rdf:type schema:CreativeWork
162 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
163 https://doi.org/10.1088/1126-6708/2007/03/090
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
166 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...