Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Santiago Cabrera, Amihay Hanany, Zhenghao Zhong

ABSTRACT

Coulomb branches of a set of 3dN = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3 to so10 which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2 group. More... »

PAGES

79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep11(2017)079

DOI

http://dx.doi.org/10.1007/jhep11(2017)079

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092691109


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cabrera", 
        "givenName": "Santiago", 
        "id": "sg:person.015574474365.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Zhenghao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377219", 
          "https://doi.org/10.1007/jhep06(2016)130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377219", 
          "https://doi.org/10.1007/jhep06(2016)130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004476555", 
          "https://doi.org/10.1007/jhep01(2014)005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2010)063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424522", 
          "https://doi.org/10.1007/jhep09(2010)063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024992501", 
          "https://doi.org/10.1088/1126-6708/2000/11/033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0096302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029540457", 
          "https://doi.org/10.1007/bfb0096302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0096302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029540457", 
          "https://doi.org/10.1007/bfb0096302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656476", 
          "https://doi.org/10.1088/1126-6708/2007/03/090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885179", 
          "https://doi.org/10.1007/jhep11(2016)175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885179", 
          "https://doi.org/10.1007/jhep11(2016)175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048031409", 
          "https://doi.org/10.1007/jhep01(2015)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050815107", 
          "https://doi.org/10.1007/bf01389764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x96000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x1340006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062927113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2016.v20.n3.a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2017)023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083698145", 
          "https://doi.org/10.1007/jhep02(2017)023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2017)023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083698145", 
          "https://doi.org/10.1007/jhep02(2017)023"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "Coulomb branches of a set of 3dN = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of T\u03c3(SO(n)\u2228) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3 to so10 which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig\u2019s Canonical QuotientA\u00afO\u03bb of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a \u21242 group.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep11(2017)079", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6502537", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Nilpotent orbits and the Coulomb branch of T\u03c3(G) theories: special orthogonal vs orthogonal gauge group factors", 
    "pagination": "79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97f6f09aa4144e8725ae62df9bd26b0469c22ddca9f56f74b026023dae0493d8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep11(2017)079"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092691109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep11(2017)079", 
      "https://app.dimensions.ai/details/publication/pub.1092691109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP11(2017)079"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2017)079'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep11(2017)079 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N473fb6f76c2b4385a4f79c6dca2e48bb
4 schema:citation sg:pub.10.1007/bf01389764
5 sg:pub.10.1007/bfb0096302
6 sg:pub.10.1007/jhep01(2014)005
7 sg:pub.10.1007/jhep01(2015)150
8 sg:pub.10.1007/jhep02(2017)023
9 sg:pub.10.1007/jhep06(2016)130
10 sg:pub.10.1007/jhep09(2010)063
11 sg:pub.10.1007/jhep11(2016)175
12 sg:pub.10.1088/1126-6708/2000/11/033
13 sg:pub.10.1088/1126-6708/2007/03/090
14 https://doi.org/10.1016/0550-3213(77)90221-8
15 https://doi.org/10.1142/s0129167x96000116
16 https://doi.org/10.1142/s0217751x1340006x
17 https://doi.org/10.2307/1971193
18 https://doi.org/10.4310/atmp.2009.v13.n3.a5
19 https://doi.org/10.4310/atmp.2016.v20.n3.a4
20 schema:datePublished 2017-11
21 schema:datePublishedReg 2017-11-01
22 schema:description Coulomb branches of a set of 3dN = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra son. From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O(N ) or special orthogonal SO(N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of Tσ(SO(n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so3 to so10 which are special and normal are presented. A new relationship between the choice of SO/O(N ) factors in the gauge group and the Lusztig’s Canonical QuotientA¯Oλ of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO(N ) gauge group factors by the diagonal action of a ℤ2 group.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N57899122b4e64461add6c2513bd462a1
27 Ndab1e57b18af4119b4661b73e9804aab
28 sg:journal.1052482
29 schema:name Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors
30 schema:pagination 79
31 schema:productId N3e0e5fa3a1f94c16878c92736dda8605
32 N41d95a20444c48bcada13d10867a573b
33 Nfceb4fafc1d44c79ae3d10e010191fe5
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
35 https://doi.org/10.1007/jhep11(2017)079
36 schema:sdDatePublished 2019-04-10T16:38
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N6257d108aa6c4429ac430c3a5ac3cee8
39 schema:url http://link.springer.com/10.1007/JHEP11(2017)079
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2481afe80f1e477c9560c8f618f79dc6 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
44 schema:familyName Zhong
45 schema:givenName Zhenghao
46 rdf:type schema:Person
47 N3e0e5fa3a1f94c16878c92736dda8605 schema:name readcube_id
48 schema:value 97f6f09aa4144e8725ae62df9bd26b0469c22ddca9f56f74b026023dae0493d8
49 rdf:type schema:PropertyValue
50 N41d95a20444c48bcada13d10867a573b schema:name doi
51 schema:value 10.1007/jhep11(2017)079
52 rdf:type schema:PropertyValue
53 N473fb6f76c2b4385a4f79c6dca2e48bb rdf:first sg:person.015574474365.83
54 rdf:rest N728aa4d7c613454e90cae15936073fa1
55 N57899122b4e64461add6c2513bd462a1 schema:issueNumber 11
56 rdf:type schema:PublicationIssue
57 N6257d108aa6c4429ac430c3a5ac3cee8 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N728aa4d7c613454e90cae15936073fa1 rdf:first sg:person.012155553275.80
60 rdf:rest Na9f1ad6dca79422088f79ffbc61520d5
61 Na9f1ad6dca79422088f79ffbc61520d5 rdf:first N2481afe80f1e477c9560c8f618f79dc6
62 rdf:rest rdf:nil
63 Ndab1e57b18af4119b4661b73e9804aab schema:volumeNumber 2017
64 rdf:type schema:PublicationVolume
65 Nfceb4fafc1d44c79ae3d10e010191fe5 schema:name dimensions_id
66 schema:value pub.1092691109
67 rdf:type schema:PropertyValue
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
75 rdf:type schema:MonetaryGrant
76 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
77 rdf:type schema:MonetaryGrant
78 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2017)079
79 rdf:type schema:MonetaryGrant
80 sg:journal.1052482 schema:issn 1029-8479
81 1126-6708
82 schema:name Journal of High Energy Physics
83 rdf:type schema:Periodical
84 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
85 schema:familyName Hanany
86 schema:givenName Amihay
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
88 rdf:type schema:Person
89 sg:person.015574474365.83 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
90 schema:familyName Cabrera
91 schema:givenName Santiago
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
93 rdf:type schema:Person
94 sg:pub.10.1007/bf01389764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815107
95 https://doi.org/10.1007/bf01389764
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
98 https://doi.org/10.1007/bfb0096302
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
101 https://doi.org/10.1007/jhep01(2014)005
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
104 https://doi.org/10.1007/jhep01(2015)150
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
107 https://doi.org/10.1007/jhep02(2017)023
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
110 https://doi.org/10.1007/jhep06(2016)130
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
113 https://doi.org/10.1007/jhep09(2010)063
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
116 https://doi.org/10.1007/jhep11(2016)175
117 rdf:type schema:CreativeWork
118 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
119 https://doi.org/10.1088/1126-6708/2000/11/033
120 rdf:type schema:CreativeWork
121 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
122 https://doi.org/10.1088/1126-6708/2007/03/090
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0550-3213(77)90221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399525
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1142/s0129167x96000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903501
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1142/s0217751x1340006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062927113
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2307/1971193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676488
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4310/atmp.2016.v20.n3.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457481
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
137 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...