Branes and the Kraft-Procesi transition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-29

AUTHORS

Santiago Cabrera, Amihay Hanany

ABSTRACT

The Coulomb and Higgs branches of certain 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories can be understood as closures of nilpotent orbits. Recently, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3d A-type theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions. More... »

PAGES

175

References to SciGraph publications

  • 1982. Classes Unipotentes et Sous-groupes de Borel in NONE
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2002. The Adjoint Representation and the Adjoint Action in ALGEBRAIC QUOTIENTS. TORUS ACTIONS AND COHOMOLOGY. THE ADJOINT REPRESENTATION AND THE ADJOINT ACTION
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1979-10. Closures of conjugacy classes of matrices are normal in INVENTIONES MATHEMATICAE
  • 2016-07-15. 6D RG flows and nilpotent hierarchies in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-07-27. Nahm's equations, N = 1* domain walls, and D-strings in AdS5 × S5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 1992. Algebraic Geometry, A First Course in NONE
  • 1980-10. Minimal singularities inGLn in INVENTIONES MATHEMATICAE
  • 2010-08-13. Extremal solutions of the S3 model and nilpotent orbits of G2(2) in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-21. Counting the massive vacua of N=1∗ super Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2016)175

    DOI

    http://dx.doi.org/10.1007/jhep11(2016)175

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040885179


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cabrera", 
            "givenName": "Santiago", 
            "id": "sg:person.015574474365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2001/07/041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035031875", 
              "https://doi.org/10.1088/1126-6708/2001/07/041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032332974", 
              "https://doi.org/10.1007/bf01394257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01389764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050815107", 
              "https://doi.org/10.1007/bf01389764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020208042", 
              "https://doi.org/10.1007/jhep08(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008629539", 
              "https://doi.org/10.1007/978-1-4757-2189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798386", 
              "https://doi.org/10.1007/jhep07(2016)082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05071-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019231156", 
              "https://doi.org/10.1007/978-3-662-05071-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540457", 
              "https://doi.org/10.1007/bfb0096302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022851903", 
              "https://doi.org/10.1007/jhep08(2010)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-11-29", 
        "datePublishedReg": "2016-11-29", 
        "description": "The Coulomb and Higgs branches of certain 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} gauge theories can be understood as closures of nilpotent orbits. Recently, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3d A-type theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "minimal singularities", 
          "nilpotent orbits", 
          "gauge theory", 
          "effective 3d theory", 
          "simplest possible case", 
          "Kraft-Procesi transitions", 
          "mathematical work", 
          "new theorem", 
          "classical groups", 
          "Higgs branch", 
          "brane configurations", 
          "singularity", 
          "Higgs mechanism", 
          "inclusion relations", 
          "brane", 
          "theory", 
          "orbit", 
          "underlying structure", 
          "Procesi", 
          "efficient procedure", 
          "theorem", 
          "possible cases", 
          "Namikawa", 
          "type IIB", 
          "transition", 
          "Coulomb", 
          "embedding", 
          "class", 
          "special role", 
          "configuration", 
          "branches", 
          "note", 
          "structure", 
          "cases", 
          "work", 
          "procedure", 
          "results", 
          "relation", 
          "classification", 
          "family", 
          "closure", 
          "mechanism", 
          "IIb", 
          "group", 
          "role", 
          "kraft"
        ], 
        "name": "Branes and the Kraft-Procesi transition", 
        "pagination": "175", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040885179"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2016)175"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2016)175", 
          "https://app.dimensions.ai/details/publication/pub.1040885179"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_703.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep11(2016)175"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2016)175'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2016)175'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2016)175'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2016)175'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      84 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2016)175 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd5b6ef9df389467bbbf462f76535fdfc
    4 schema:citation sg:pub.10.1007/978-1-4757-2189-8
    5 sg:pub.10.1007/978-3-662-05071-2_3
    6 sg:pub.10.1007/bf01389764
    7 sg:pub.10.1007/bf01394257
    8 sg:pub.10.1007/bf02565876
    9 sg:pub.10.1007/bfb0096302
    10 sg:pub.10.1007/jhep01(2014)005
    11 sg:pub.10.1007/jhep06(2010)100
    12 sg:pub.10.1007/jhep06(2016)130
    13 sg:pub.10.1007/jhep07(2016)082
    14 sg:pub.10.1007/jhep08(2010)072
    15 sg:pub.10.1007/jhep08(2015)106
    16 sg:pub.10.1088/1126-6708/2000/11/033
    17 sg:pub.10.1088/1126-6708/2001/07/041
    18 schema:datePublished 2016-11-29
    19 schema:datePublishedReg 2016-11-29
    20 schema:description The Coulomb and Higgs branches of certain 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories can be understood as closures of nilpotent orbits. Recently, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3d A-type theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N5dcaa109beb1408ab87b6736cef76ba1
    24 Nb028d6cc23ab42859ad5bbbba23caa80
    25 sg:journal.1052482
    26 schema:keywords Coulomb
    27 Higgs branch
    28 Higgs mechanism
    29 IIb
    30 Kraft-Procesi transitions
    31 Namikawa
    32 Procesi
    33 branches
    34 brane
    35 brane configurations
    36 cases
    37 class
    38 classical groups
    39 classification
    40 closure
    41 configuration
    42 effective 3d theory
    43 efficient procedure
    44 embedding
    45 family
    46 gauge theory
    47 group
    48 inclusion relations
    49 kraft
    50 mathematical work
    51 mechanism
    52 minimal singularities
    53 new theorem
    54 nilpotent orbits
    55 note
    56 orbit
    57 possible cases
    58 procedure
    59 relation
    60 results
    61 role
    62 simplest possible case
    63 singularity
    64 special role
    65 structure
    66 theorem
    67 theory
    68 transition
    69 type IIB
    70 underlying structure
    71 work
    72 schema:name Branes and the Kraft-Procesi transition
    73 schema:pagination 175
    74 schema:productId N6890c49f8f9749bea70bafcef2e60e6e
    75 Nc1ed84fccfd442dfb278c55c92c3a596
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    77 https://doi.org/10.1007/jhep11(2016)175
    78 schema:sdDatePublished 2022-12-01T06:34
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N84283427db0e4c73983b83c93e04f83a
    81 schema:url https://doi.org/10.1007/jhep11(2016)175
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N280e1aa9861d44c98cf2818f68feffb2 rdf:first sg:person.012155553275.80
    86 rdf:rest rdf:nil
    87 N5dcaa109beb1408ab87b6736cef76ba1 schema:volumeNumber 2016
    88 rdf:type schema:PublicationVolume
    89 N6890c49f8f9749bea70bafcef2e60e6e schema:name dimensions_id
    90 schema:value pub.1040885179
    91 rdf:type schema:PropertyValue
    92 N84283427db0e4c73983b83c93e04f83a schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nb028d6cc23ab42859ad5bbbba23caa80 schema:issueNumber 11
    95 rdf:type schema:PublicationIssue
    96 Nc1ed84fccfd442dfb278c55c92c3a596 schema:name doi
    97 schema:value 10.1007/jhep11(2016)175
    98 rdf:type schema:PropertyValue
    99 Nd5b6ef9df389467bbbf462f76535fdfc rdf:first sg:person.015574474365.83
    100 rdf:rest N280e1aa9861d44c98cf2818f68feffb2
    101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mathematical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Pure Mathematics
    106 rdf:type schema:DefinedTerm
    107 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2016)175
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2016)175
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1052482 schema:issn 1029-8479
    112 1126-6708
    113 schema:name Journal of High Energy Physics
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    117 schema:familyName Hanany
    118 schema:givenName Amihay
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    120 rdf:type schema:Person
    121 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
    122 schema:familyName Cabrera
    123 schema:givenName Santiago
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
    125 rdf:type schema:Person
    126 sg:pub.10.1007/978-1-4757-2189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008629539
    127 https://doi.org/10.1007/978-1-4757-2189-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-662-05071-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231156
    130 https://doi.org/10.1007/978-3-662-05071-2_3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01389764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815107
    133 https://doi.org/10.1007/bf01389764
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01394257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332974
    136 https://doi.org/10.1007/bf01394257
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    139 https://doi.org/10.1007/bf02565876
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
    142 https://doi.org/10.1007/bfb0096302
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    145 https://doi.org/10.1007/jhep01(2014)005
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    148 https://doi.org/10.1007/jhep06(2010)100
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    151 https://doi.org/10.1007/jhep06(2016)130
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep07(2016)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798386
    154 https://doi.org/10.1007/jhep07(2016)082
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep08(2010)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022851903
    157 https://doi.org/10.1007/jhep08(2010)072
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep08(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208042
    160 https://doi.org/10.1007/jhep08(2015)106
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    163 https://doi.org/10.1088/1126-6708/2000/11/033
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1088/1126-6708/2001/07/041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035031875
    166 https://doi.org/10.1088/1126-6708/2001/07/041
    167 rdf:type schema:CreativeWork
    168 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
    169 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...