Ontology type: schema:ScholarlyArticle Open Access: True
2015-11-18
AUTHORSMichele Del Zotto, Cumrun Vafa, Dan Xie
ABSTRACTWe study compactification of 6 dimensional (1,0) theories on T2. We use geometric engineering of these theories via F-theory and employ mirror symmetry technology to solve for the effective 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} geometry for a large number of the (1,0) theories including those associated with conformal matter. Using this we show that for a given 6d theory we can obtain many inequivalent 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SCFTs. Some of these respect the global symmetries of the 6d theory while others exhibit SL(2, ℤ) duality symmetry inherited from global diffeomorphisms of the T2. This construction also explains the 6d origin of moduli space of 4d affine ADE quiver theories as flat ADE connections on T2. Among the resulting 4dN=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} CFTs we find theories whose vacuum geometry is captured by an LG theory (as opposed to a curve or a local CY geometry). We obtain arbitrary genus curves of class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} with punctures from toroidal compactification of (1, 0) SCFTs where the curve of the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} theory emerges through mirror symmetry. We also show that toroidal compactification of the little string version of these theories can lead to class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} theories with no punctures on arbitrary genus Riemann surface. More... »
PAGES123
http://scigraph.springernature.com/pub.10.1007/jhep11(2015)123
DOIhttp://dx.doi.org/10.1007/jhep11(2015)123
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1011988102
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A."
],
"type": "Organization"
},
"familyName": "Del Zotto",
"givenName": "Michele",
"id": "sg:person.015737202107.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015737202107.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A."
],
"type": "Organization"
},
"familyName": "Vafa",
"givenName": "Cumrun",
"id": "sg:person.014523005000.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CMSA, Harvard University, 02138, Cambridge, MA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.",
"CMSA, Harvard University, 02138, Cambridge, MA, U.S.A."
],
"type": "Organization"
},
"familyName": "Xie",
"givenName": "Dan",
"id": "sg:person.014441531117.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep06(2014)014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041020676",
"https://doi.org/10.1007/jhep06(2014)014"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)195",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038498502",
"https://doi.org/10.1007/jhep06(2015)195"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2015)073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010218429",
"https://doi.org/10.1007/jhep07(2015)073"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2011)045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000439259",
"https://doi.org/10.1007/jhep01(2011)045"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)082",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049877267",
"https://doi.org/10.1007/jhep06(2015)082"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2015)014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037227102",
"https://doi.org/10.1007/jhep07(2015)014"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/09/052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004902104",
"https://doi.org/10.1088/1126-6708/2009/09/052"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2015)054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022076696",
"https://doi.org/10.1007/jhep02(2015)054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021221673",
"https://doi.org/10.1007/jhep10(2012)054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036285701",
"https://doi.org/10.1007/jhep01(2013)100"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2139-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034199026",
"https://doi.org/10.1007/s00220-014-2139-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/03/003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049975593",
"https://doi.org/10.1088/1126-6708/1998/03/003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2014)003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052599681",
"https://doi.org/10.1007/jhep12(2014)003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2015)185",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020743649",
"https://doi.org/10.1007/jhep02(2015)185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2010)042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033175317",
"https://doi.org/10.1007/jhep08(2010)042"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2014)028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016623483",
"https://doi.org/10.1007/jhep05(2014)028"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)175",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045230132",
"https://doi.org/10.1007/jhep01(2014)175"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)191",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053547074",
"https://doi.org/10.1007/jhep01(2013)191"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2015)007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003468441",
"https://doi.org/10.1007/jhep09(2015)007"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027031622",
"https://doi.org/10.1007/jhep06(2015)027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2013)153",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041477994",
"https://doi.org/10.1007/jhep04(2013)153"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/10/004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041715328",
"https://doi.org/10.1088/1126-6708/1998/10/004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2008/03/069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024408613",
"https://doi.org/10.1088/1126-6708/2008/03/069"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-11-18",
"datePublishedReg": "2015-11-18",
"description": "We study compactification of 6 dimensional (1,0) theories on T2. We use geometric engineering of these theories via F-theory and employ mirror symmetry technology to solve for the effective 4d N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} geometry for a large number of the (1,0) theories including those associated with conformal matter. Using this we show that for a given 6d theory we can obtain many inequivalent 4d N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} SCFTs. Some of these respect the global symmetries of the 6d theory while others exhibit SL(2, \u2124) duality symmetry inherited from global diffeomorphisms of the T2. This construction also explains the 6d origin of moduli space of 4d affine ADE quiver theories as flat ADE connections on T2. Among the resulting 4dN=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} CFTs we find theories whose vacuum geometry is captured by an LG theory (as opposed to a curve or a local CY geometry). We obtain arbitrary genus curves of class S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{S} $$\\end{document} with punctures from toroidal compactification of (1, 0) SCFTs where the curve of the class S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{S} $$\\end{document} theory emerges through mirror symmetry. We also show that toroidal compactification of the little string version of these theories can lead to class S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{S} $$\\end{document} theories with no punctures on arbitrary genus Riemann surface.",
"genre": "article",
"id": "sg:pub.10.1007/jhep11(2015)123",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3123725",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2015"
}
],
"keywords": [
"toroidal compactification",
"geometric engineering",
"arbitrary genus Riemann surface",
"genus Riemann surfaces",
"mirror symmetry",
"vacuum geometry",
"conformal matter",
"duality symmetry",
"genus curves",
"Riemann surface",
"dimensional theory",
"effective 4D",
"moduli space",
"global diffeomorphism",
"global symmetry",
"quiver theories",
"compactification",
"symmetry",
"SCFTs",
"string version",
"theory",
"geometry",
"class",
"diffeomorphisms",
"CFT",
"large number",
"space",
"curves",
"engineering",
"version",
"connection",
"construction",
"number",
"surface",
"T2",
"matter",
"origin",
"technology",
"puncture"
],
"name": "Geometric engineering, mirror symmetry and 6d10\u21924dN=2",
"pagination": "123",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1011988102"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep11(2015)123"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep11(2015)123",
"https://app.dimensions.ai/details/publication/pub.1011988102"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_669.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep11(2015)123"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)123'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)123'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)123'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)123'
This table displays all metadata directly associated to this object as RDF triples.
211 TRIPLES
22 PREDICATES
88 URIs
56 LITERALS
6 BLANK NODES