(O)Mega split View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11

AUTHORS

Karim Benakli, Luc Darmé, Mark D. Goodsell

ABSTRACT

We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale MS , as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on MS , which we derive. On the other hand, we show that renormalisation group running of soft masses above MS barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties. More... »

PAGES

100

References to SciGraph publications

  • 2013-01. Two-loop RGEs with Dirac gaugino masses in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02. Mini-Split in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05. A fake split-supersymmetry model for the 126 GeV Higgs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-07-06. The MSSM with heavy scalars in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-28. Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09. Higgs mass and unnatural supersymmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-11. Displaced vertices from X-ray lines in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01. Higgsino dark matter in high-scale supersymmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07. Higgs mass determination in supersymmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2015)100

    DOI

    http://dx.doi.org/10.1007/jhep11(2015)100

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001845431


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benakli", 
            "givenName": "Karim", 
            "id": "sg:person.014733257113.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Darm\u00e9", 
            "givenName": "Luc", 
            "id": "sg:person.016666673013.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666673013.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goodsell", 
            "givenName": "Mark D.", 
            "id": "sg:person.014237335747.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2013)066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000136050", 
              "https://doi.org/10.1007/jhep01(2013)066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/07/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000741196", 
              "https://doi.org/10.1088/1126-6708/2007/07/016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001839670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/789/1/13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002841651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2014/05/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004033288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.023535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006119220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.023535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006119220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2015/01/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006163857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.103506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006495969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.103506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006495969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2015/01/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007391006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2010.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007871765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.76.083519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.76.083519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008019548", 
              "https://doi.org/10.1007/jhep07(2015)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008019548", 
              "https://doi.org/10.1007/jhep07(2015)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2015/04/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009981732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2007.06.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011682148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2012.05.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012081759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.021802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012396486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.021802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012396486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2010.11.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012747121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2014.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014070453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.061101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014296504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.061101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014296504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2006.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014617686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2004.12.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016987873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019797033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020423747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021591103", 
              "https://doi.org/10.1088/1126-6708/2005/06/073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysbps.2012.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021809533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2014)140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023456799", 
              "https://doi.org/10.1007/jhep11(2014)140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2015/02/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024198661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.03.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027456738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2006.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027651626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029596384", 
              "https://doi.org/10.1007/jhep09(2014)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2013.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029620880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029923199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.191803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030011649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.191803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030011649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.075006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030436450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.075006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030436450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.091303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031172635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.091303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031172635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.161301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037446962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.161301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037446962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037673443", 
              "https://doi.org/10.1007/jhep05(2014)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037673443", 
              "https://doi.org/10.1007/jhep05(2014)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.251301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041323261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.251301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041323261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2006.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043127873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043850670", 
              "https://doi.org/10.1007/jhep01(2015)029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2014/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044289784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.123537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044860338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.123537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044860338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045257763", 
              "https://doi.org/10.1007/jhep02(2013)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2004.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046279958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4655(03)00222-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046760486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4655(03)00222-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046760486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047469754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047469754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.095002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.095002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.023540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050884471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.023540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050884471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.045017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051467033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.045017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051467033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stv1142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059916375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stv1559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059916811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.43.3191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060699198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.43.3191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060699198"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-11", 
        "datePublishedReg": "2015-11-01", 
        "description": "We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale MS , as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on MS , which we derive. On the other hand, we show that renormalisation group running of soft masses above MS barely constrains the model \u2014 in stark contrast to Split Supersymmetry \u2014 and hence we can have a \u201cMega Split\u201d spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep11(2015)100", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2015"
          }
        ], 
        "name": "(O)Mega split", 
        "pagination": "100", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "08ca77ab9054c0feffa9a921047c2d13b025b04ba7aed2149971a305fc0d7e68"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2015)100"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001845431"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2015)100", 
          "https://app.dimensions.ai/details/publication/pub.1001845431"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FJHEP11%282015%29100"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)100'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)100'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)100'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2015)100'


     

    This table displays all metadata directly associated to this object as RDF triples.

    241 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2015)100 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N075b9e18c6954972896523aa6e60e9ea
    4 schema:citation sg:pub.10.1007/jhep01(2013)066
    5 sg:pub.10.1007/jhep01(2015)029
    6 sg:pub.10.1007/jhep02(2013)126
    7 sg:pub.10.1007/jhep05(2014)113
    8 sg:pub.10.1007/jhep07(2015)159
    9 sg:pub.10.1007/jhep09(2014)092
    10 sg:pub.10.1007/jhep11(2014)140
    11 sg:pub.10.1088/1126-6708/2005/06/073
    12 sg:pub.10.1088/1126-6708/2007/07/016
    13 https://doi.org/10.1016/j.cpc.2010.01.011
    14 https://doi.org/10.1016/j.cpc.2010.11.030
    15 https://doi.org/10.1016/j.cpc.2012.05.021
    16 https://doi.org/10.1016/j.cpc.2013.02.019
    17 https://doi.org/10.1016/j.cpc.2014.02.018
    18 https://doi.org/10.1016/j.nuclphysb.2004.08.001
    19 https://doi.org/10.1016/j.nuclphysb.2004.12.026
    20 https://doi.org/10.1016/j.nuclphysb.2005.03.025
    21 https://doi.org/10.1016/j.nuclphysb.2005.08.011
    22 https://doi.org/10.1016/j.nuclphysb.2006.02.010
    23 https://doi.org/10.1016/j.nuclphysb.2006.03.012
    24 https://doi.org/10.1016/j.nuclphysb.2012.01.001
    25 https://doi.org/10.1016/j.nuclphysb.2014.05.005
    26 https://doi.org/10.1016/j.nuclphysb.2014.10.020
    27 https://doi.org/10.1016/j.nuclphysbps.2012.03.010
    28 https://doi.org/10.1016/j.physletb.2006.01.010
    29 https://doi.org/10.1016/j.physletb.2007.06.027
    30 https://doi.org/10.1016/s0010-4655(03)00222-4
    31 https://doi.org/10.1088/0004-637x/789/1/13
    32 https://doi.org/10.1088/1475-7516/2014/05/033
    33 https://doi.org/10.1088/1475-7516/2014/11/033
    34 https://doi.org/10.1088/1475-7516/2015/01/011
    35 https://doi.org/10.1088/1475-7516/2015/01/019
    36 https://doi.org/10.1088/1475-7516/2015/02/009
    37 https://doi.org/10.1088/1475-7516/2015/04/013
    38 https://doi.org/10.1093/mnras/stv1142
    39 https://doi.org/10.1093/mnras/stv1559
    40 https://doi.org/10.1103/physrevd.43.3191
    41 https://doi.org/10.1103/physrevd.72.075011
    42 https://doi.org/10.1103/physrevd.76.083519
    43 https://doi.org/10.1103/physrevd.84.061101
    44 https://doi.org/10.1103/physrevd.86.095002
    45 https://doi.org/10.1103/physrevd.90.023535
    46 https://doi.org/10.1103/physrevd.90.023540
    47 https://doi.org/10.1103/physrevd.90.045017
    48 https://doi.org/10.1103/physrevd.90.075006
    49 https://doi.org/10.1103/physrevd.90.103506
    50 https://doi.org/10.1103/physrevd.90.123537
    51 https://doi.org/10.1103/physrevlett.108.021802
    52 https://doi.org/10.1103/physrevlett.112.091303
    53 https://doi.org/10.1103/physrevlett.113.251301
    54 https://doi.org/10.1103/physrevlett.114.191803
    55 https://doi.org/10.1103/physrevlett.115.161301
    56 schema:datePublished 2015-11
    57 schema:datePublishedReg 2015-11-01
    58 schema:description We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale MS , as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on MS , which we derive. On the other hand, we show that renormalisation group running of soft masses above MS barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N2dcdea3a9e3b47d3836bc1140f58bc4c
    63 N6338bafbbce64df5869805cb9cb4a309
    64 sg:journal.1052482
    65 schema:name (O)Mega split
    66 schema:pagination 100
    67 schema:productId N38c4b9ed88a5483597218858bdfbfb81
    68 N506cccf3098943a29108f90e7bb16c23
    69 N8c059395b61943149db7845de494e24a
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845431
    71 https://doi.org/10.1007/jhep11(2015)100
    72 schema:sdDatePublished 2019-04-10T22:31
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N625b89852a72444e8d733c6724ca6c3f
    75 schema:url http://link.springer.com/10.1007%2FJHEP11%282015%29100
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N075b9e18c6954972896523aa6e60e9ea rdf:first sg:person.014733257113.90
    80 rdf:rest N140c277b822d4e9bae62ebc148ca5d8a
    81 N140c277b822d4e9bae62ebc148ca5d8a rdf:first sg:person.016666673013.35
    82 rdf:rest Nf170805f1cbc4375aaf78ecafecb0a63
    83 N2dcdea3a9e3b47d3836bc1140f58bc4c schema:issueNumber 11
    84 rdf:type schema:PublicationIssue
    85 N38c4b9ed88a5483597218858bdfbfb81 schema:name doi
    86 schema:value 10.1007/jhep11(2015)100
    87 rdf:type schema:PropertyValue
    88 N506cccf3098943a29108f90e7bb16c23 schema:name readcube_id
    89 schema:value 08ca77ab9054c0feffa9a921047c2d13b025b04ba7aed2149971a305fc0d7e68
    90 rdf:type schema:PropertyValue
    91 N625b89852a72444e8d733c6724ca6c3f schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N6338bafbbce64df5869805cb9cb4a309 schema:volumeNumber 2015
    94 rdf:type schema:PublicationVolume
    95 N8c059395b61943149db7845de494e24a schema:name dimensions_id
    96 schema:value pub.1001845431
    97 rdf:type schema:PropertyValue
    98 Nf170805f1cbc4375aaf78ecafecb0a63 rdf:first sg:person.014237335747.23
    99 rdf:rest rdf:nil
    100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Physical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1052482 schema:issn 1029-8479
    107 1126-6708
    108 schema:name Journal of High Energy Physics
    109 rdf:type schema:Periodical
    110 sg:person.014237335747.23 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    111 schema:familyName Goodsell
    112 schema:givenName Mark D.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23
    114 rdf:type schema:Person
    115 sg:person.014733257113.90 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    116 schema:familyName Benakli
    117 schema:givenName Karim
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90
    119 rdf:type schema:Person
    120 sg:person.016666673013.35 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    121 schema:familyName Darmé
    122 schema:givenName Luc
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666673013.35
    124 rdf:type schema:Person
    125 sg:pub.10.1007/jhep01(2013)066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000136050
    126 https://doi.org/10.1007/jhep01(2013)066
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep01(2015)029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043850670
    129 https://doi.org/10.1007/jhep01(2015)029
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep02(2013)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045257763
    132 https://doi.org/10.1007/jhep02(2013)126
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep05(2014)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673443
    135 https://doi.org/10.1007/jhep05(2014)113
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep07(2015)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008019548
    138 https://doi.org/10.1007/jhep07(2015)159
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep09(2014)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029596384
    141 https://doi.org/10.1007/jhep09(2014)092
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep11(2014)140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023456799
    144 https://doi.org/10.1007/jhep11(2014)140
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1088/1126-6708/2005/06/073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591103
    147 https://doi.org/10.1088/1126-6708/2005/06/073
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1088/1126-6708/2007/07/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741196
    150 https://doi.org/10.1088/1126-6708/2007/07/016
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.cpc.2010.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007871765
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.cpc.2010.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012747121
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.cpc.2012.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012081759
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.cpc.2013.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029620880
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.cpc.2014.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014070453
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.nuclphysb.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046279958
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.nuclphysb.2004.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016987873
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.nuclphysb.2005.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027456738
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.nuclphysb.2005.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839670
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.nuclphysb.2006.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043127873
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.nuclphysb.2006.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014617686
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.nuclphysb.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029923199
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.nuclphysb.2014.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019797033
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.nuclphysb.2014.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020423747
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.nuclphysbps.2012.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021809533
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.physletb.2006.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027651626
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.physletb.2007.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011682148
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/s0010-4655(03)00222-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046760486
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1088/0004-637x/789/1/13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002841651
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1088/1475-7516/2014/05/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004033288
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1088/1475-7516/2014/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044289784
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1088/1475-7516/2015/01/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007391006
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1088/1475-7516/2015/01/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006163857
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1088/1475-7516/2015/02/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024198661
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1088/1475-7516/2015/04/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009981732
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1093/mnras/stv1142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059916375
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/mnras/stv1559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059916811
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/physrevd.43.3191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060699198
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physrevd.72.075011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047469754
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/physrevd.76.083519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978199
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1103/physrevd.84.061101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014296504
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1103/physrevd.86.095002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048303214
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1103/physrevd.90.023535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006119220
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physrevd.90.023540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050884471
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1103/physrevd.90.045017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051467033
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevd.90.075006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030436450
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevd.90.103506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495969
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevd.90.123537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044860338
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrevlett.108.021802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012396486
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevlett.112.091303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172635
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrevlett.113.251301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041323261
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrevlett.114.191803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030011649
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevlett.115.161301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037446962
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    239 schema:name CNRS, UMR 7589, LPTHE, F-75005, Paris, France
    240 Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France
    241 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...