Vector fields in holographic cosmology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-11-27

AUTHORS

James B.Hartle, S. W. Hawking, Thomas Hertog

ABSTRACT

We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs. More... »

PAGES

201

References to SciGraph publications

  • 2003-05-09. Non-gaussian features of primordial fluctuations in single field inflationary models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-02-06. The black hole final state in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-08-09. Domain-wall/cosmology correspondence in AdS/dS supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-07-26. Pseudo-supersymmetry and a tale of alternate realities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-16. The wave function of quantum de Sitter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-22. Holographic no-boundary measure in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep11(2013)201

    DOI

    http://dx.doi.org/10.1007/jhep11(2013)201

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046333535


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, 93106, Santa Barbara, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "Department of Physics, University of California, 93106, Santa Barbara, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "B.Hartle", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "DAMTP, CMS, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "DAMTP, CMS, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hertog", 
            "givenName": "Thomas", 
            "id": "sg:person.010204067477.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204067477.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2007/08/036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047690186", 
              "https://doi.org/10.1088/1126-6708/2007/08/036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004373685", 
              "https://doi.org/10.1088/1126-6708/2007/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/05/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016268949", 
              "https://doi.org/10.1088/1126-6708/2003/05/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2012)096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002217264", 
              "https://doi.org/10.1007/jhep11(2012)096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032811259", 
              "https://doi.org/10.1007/jhep05(2012)095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014832555", 
              "https://doi.org/10.1088/1126-6708/2004/02/008"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-11-27", 
        "datePublishedReg": "2013-11-27", 
        "description": "We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep11(2013)201", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3137261", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "vector fields", 
          "saddle point", 
          "boundary wave function", 
          "holographic formulation", 
          "AdS geometry", 
          "Sitter universe", 
          "asymptotic phase", 
          "dual description", 
          "holographic cosmology", 
          "wave functions", 
          "matter profile", 
          "transition region", 
          "level probabilities", 
          "AD regions", 
          "field", 
          "Lorentzian", 
          "universe", 
          "CFT", 
          "cosmology", 
          "geometry", 
          "complex deformation", 
          "formulation", 
          "point", 
          "probability", 
          "model", 
          "representation", 
          "description", 
          "function", 
          "region", 
          "viewpoint", 
          "phase", 
          "deformation", 
          "profile", 
          "action", 
          "history", 
          "complex transition region"
        ], 
        "name": "Vector fields in holographic cosmology", 
        "pagination": "201", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046333535"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep11(2013)201"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep11(2013)201", 
          "https://app.dimensions.ai/details/publication/pub.1046333535"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_581.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep11(2013)201"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2013)201'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2013)201'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2013)201'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2013)201'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      69 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep11(2013)201 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author N788c6d1525554a26b0edab3bcdbfb33a
    7 schema:citation sg:pub.10.1007/jhep05(2012)095
    8 sg:pub.10.1007/jhep11(2012)096
    9 sg:pub.10.1088/1126-6708/2003/05/013
    10 sg:pub.10.1088/1126-6708/2004/02/008
    11 sg:pub.10.1088/1126-6708/2007/07/067
    12 sg:pub.10.1088/1126-6708/2007/08/036
    13 schema:datePublished 2013-11-27
    14 schema:datePublishedReg 2013-11-27
    15 schema:description We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N6baffa6f413845a4b99319995fd64715
    19 N9992e0efb3754f2e80a3c9e8f42a0214
    20 sg:journal.1052482
    21 schema:keywords AD regions
    22 AdS geometry
    23 CFT
    24 Lorentzian
    25 Sitter universe
    26 action
    27 asymptotic phase
    28 boundary wave function
    29 complex deformation
    30 complex transition region
    31 cosmology
    32 deformation
    33 description
    34 dual description
    35 field
    36 formulation
    37 function
    38 geometry
    39 history
    40 holographic cosmology
    41 holographic formulation
    42 level probabilities
    43 matter profile
    44 model
    45 phase
    46 point
    47 probability
    48 profile
    49 region
    50 representation
    51 saddle point
    52 transition region
    53 universe
    54 vector fields
    55 viewpoint
    56 wave functions
    57 schema:name Vector fields in holographic cosmology
    58 schema:pagination 201
    59 schema:productId N88322c8aac1a4c4e8b65301deacb0495
    60 Nbab4a4aba9ce4b688237be5cb7d359e2
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333535
    62 https://doi.org/10.1007/jhep11(2013)201
    63 schema:sdDatePublished 2022-11-24T20:57
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N52af2382d50b442fac3c1eb67861cc7d
    66 schema:url https://doi.org/10.1007/jhep11(2013)201
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N52af2382d50b442fac3c1eb67861cc7d schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N6baffa6f413845a4b99319995fd64715 schema:issueNumber 11
    73 rdf:type schema:PublicationIssue
    74 N788c6d1525554a26b0edab3bcdbfb33a rdf:first Nbef6e7f3d52544fe950fd74e31440e6c
    75 rdf:rest N89cdba46d79e425790f2b994c85f3d62
    76 N88322c8aac1a4c4e8b65301deacb0495 schema:name dimensions_id
    77 schema:value pub.1046333535
    78 rdf:type schema:PropertyValue
    79 N89cdba46d79e425790f2b994c85f3d62 rdf:first sg:person.012212614165.22
    80 rdf:rest Na8b06c669b70464b9b78559668e16b01
    81 N9992e0efb3754f2e80a3c9e8f42a0214 schema:volumeNumber 2013
    82 rdf:type schema:PublicationVolume
    83 Na8b06c669b70464b9b78559668e16b01 rdf:first sg:person.010204067477.55
    84 rdf:rest rdf:nil
    85 Nbab4a4aba9ce4b688237be5cb7d359e2 schema:name doi
    86 schema:value 10.1007/jhep11(2013)201
    87 rdf:type schema:PropertyValue
    88 Nbef6e7f3d52544fe950fd74e31440e6c schema:affiliation grid-institutes:grid.133342.4
    89 schema:familyName B.Hartle
    90 schema:givenName James
    91 rdf:type schema:Person
    92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mathematical Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Physics
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Physical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Quantum Physics
    106 rdf:type schema:DefinedTerm
    107 sg:grant.3137261 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep11(2013)201
    108 rdf:type schema:MonetaryGrant
    109 sg:journal.1052482 schema:issn 1029-8479
    110 1126-6708
    111 schema:name Journal of High Energy Physics
    112 schema:publisher Springer Nature
    113 rdf:type schema:Periodical
    114 sg:person.010204067477.55 schema:affiliation grid-institutes:grid.5596.f
    115 schema:familyName Hertog
    116 schema:givenName Thomas
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204067477.55
    118 rdf:type schema:Person
    119 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    120 schema:familyName Hawking
    121 schema:givenName S. W.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    123 rdf:type schema:Person
    124 sg:pub.10.1007/jhep05(2012)095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811259
    125 https://doi.org/10.1007/jhep05(2012)095
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep11(2012)096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217264
    128 https://doi.org/10.1007/jhep11(2012)096
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1088/1126-6708/2003/05/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016268949
    131 https://doi.org/10.1088/1126-6708/2003/05/013
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1088/1126-6708/2004/02/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014832555
    134 https://doi.org/10.1088/1126-6708/2004/02/008
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1088/1126-6708/2007/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004373685
    137 https://doi.org/10.1088/1126-6708/2007/07/067
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1088/1126-6708/2007/08/036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047690186
    140 https://doi.org/10.1088/1126-6708/2007/08/036
    141 rdf:type schema:CreativeWork
    142 grid-institutes:grid.133342.4 schema:alternateName Department of Physics, University of California, 93106, Santa Barbara, U.S.A.
    143 schema:name Department of Physics, University of California, 93106, Santa Barbara, U.S.A.
    144 rdf:type schema:Organization
    145 grid-institutes:grid.5335.0 schema:alternateName DAMTP, CMS, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, U.K.
    146 schema:name DAMTP, CMS, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, U.K.
    147 rdf:type schema:Organization
    148 grid-institutes:grid.5596.f schema:alternateName Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
    149 schema:name Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...