Tinkertoys for Gaiotto duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11

AUTHORS

Oscar Chacaltana, Jacques Distler

ABSTRACT

We describe a procedure for classifying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} superconformal theories of the type introduced by Davide Gaiotto. Any curve, C, on which the 6D AN−1 SCFT is compactified, can be decomposed into 3-punctured spheres, connected by cylinders. We classify the spheres, and the cylinders that connect them. The classification is carried out explicitly, up through N = 5, and for several families of SCFTs for arbitrary N. These lead to a wealth of new S-dualities between Lagrangian and non-Lagrangian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} SCFTs. More... »

PAGES

99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep11(2010)099

DOI

http://dx.doi.org/10.1007/jhep11(2010)099

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013246104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Theory Group and Texas Cosmology Center, Department of Physics, University of Texas at Austin, 78712, Austin, TX, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chacaltana", 
        "givenName": "Oscar", 
        "id": "sg:person.010424535651.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424535651.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Theory Group and Texas Cosmology Center, Department of Physics, University of Texas at Austin, 78712, Austin, TX, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Distler", 
        "givenName": "Jacques", 
        "id": "sg:person.01141564604.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141564604.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/aphy.1994.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000225102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2010)063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424522", 
          "https://doi.org/10.1007/jhep09(2010)063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016875528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016875528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-010-0369-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022882223", 
          "https://doi.org/10.1007/s11005-010-0369-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-010-0369-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022882223", 
          "https://doi.org/10.1007/s11005-010-0369-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/17/3/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028962007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453331", 
          "https://doi.org/10.1007/jhep01(2010)088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453331", 
          "https://doi.org/10.1007/jhep01(2010)088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/01/037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033149929", 
          "https://doi.org/10.1088/1126-6708/2008/01/037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2010)107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033814222", 
          "https://doi.org/10.1007/jhep08(2010)107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00661-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039288570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/01/074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867495", 
          "https://doi.org/10.1088/1126-6708/2008/01/074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051078287", 
          "https://doi.org/10.1088/1126-6708/2007/12/088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11", 
    "datePublishedReg": "2010-11-01", 
    "description": "We describe a procedure for classifying \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathcal{N} = 2 $\\end{document} superconformal theories of the type introduced by Davide Gaiotto. Any curve, C, on which the 6D AN\u22121 SCFT is compactified, can be decomposed into 3-punctured spheres, connected by cylinders. We classify the spheres, and the cylinders that connect them. The classification is carried out explicitly, up through N = 5, and for several families of SCFTs for arbitrary N. These lead to a wealth of new S-dualities between Lagrangian and non-Lagrangian \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathcal{N} = 2 $\\end{document} SCFTs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep11(2010)099", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Tinkertoys for Gaiotto duality", 
    "pagination": "99", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f1a944d520933ece04c8709c678fc9c5238747c14aff75330d23982e14e37f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep11(2010)099"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013246104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep11(2010)099", 
      "https://app.dimensions.ai/details/publication/pub.1013246104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60367_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP11%282010%29099"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2010)099'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2010)099'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2010)099'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep11(2010)099'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep11(2010)099 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nebb5a2f7a226455690a411aff8c08f9a
4 schema:citation sg:pub.10.1007/jhep01(2010)088
5 sg:pub.10.1007/jhep08(2010)107
6 sg:pub.10.1007/jhep09(2010)063
7 sg:pub.10.1007/s00220-009-0938-6
8 sg:pub.10.1007/s11005-010-0369-5
9 sg:pub.10.1088/1126-6708/2007/12/088
10 sg:pub.10.1088/1126-6708/2008/01/037
11 sg:pub.10.1088/1126-6708/2008/01/074
12 sg:pub.10.1088/1126-6708/2009/07/067
13 sg:pub.10.1088/1126-6708/2009/09/052
14 https://doi.org/10.1006/aphy.1994.1045
15 https://doi.org/10.1016/0550-3213(95)00661-3
16 https://doi.org/10.1016/s0550-3213(97)00039-4
17 https://doi.org/10.1088/0264-9381/17/3/307
18 https://doi.org/10.1103/physrevlett.75.1699
19 https://doi.org/10.2307/2372999
20 schema:datePublished 2010-11
21 schema:datePublishedReg 2010-11-01
22 schema:description We describe a procedure for classifying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} superconformal theories of the type introduced by Davide Gaiotto. Any curve, C, on which the 6D AN−1 SCFT is compactified, can be decomposed into 3-punctured spheres, connected by cylinders. We classify the spheres, and the cylinders that connect them. The classification is carried out explicitly, up through N = 5, and for several families of SCFTs for arbitrary N. These lead to a wealth of new S-dualities between Lagrangian and non-Lagrangian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} SCFTs.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N5529bfc3885d469a9f1307eb8b3434e5
27 N9d093948a02444a6925ac0f39c96947c
28 sg:journal.1052482
29 schema:name Tinkertoys for Gaiotto duality
30 schema:pagination 99
31 schema:productId N192b69f02fa646d78691c34cfd6e39ed
32 Nb3c4666a55cc43f2a5d4a7e6006ec10f
33 Nf08d660d99dc4637bbaaf77906cba45c
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
35 https://doi.org/10.1007/jhep11(2010)099
36 schema:sdDatePublished 2019-04-11T11:04
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N20e9514fac0a4734a4e0bd060c431cf5
39 schema:url https://link.springer.com/10.1007%2FJHEP11%282010%29099
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N192b69f02fa646d78691c34cfd6e39ed schema:name doi
44 schema:value 10.1007/jhep11(2010)099
45 rdf:type schema:PropertyValue
46 N20e9514fac0a4734a4e0bd060c431cf5 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N5529bfc3885d469a9f1307eb8b3434e5 schema:issueNumber 11
49 rdf:type schema:PublicationIssue
50 N6f6393bad04444b0a5adf6cf6dbc817e rdf:first sg:person.01141564604.58
51 rdf:rest rdf:nil
52 N9d093948a02444a6925ac0f39c96947c schema:volumeNumber 2010
53 rdf:type schema:PublicationVolume
54 Nb3c4666a55cc43f2a5d4a7e6006ec10f schema:name dimensions_id
55 schema:value pub.1013246104
56 rdf:type schema:PropertyValue
57 Nebb5a2f7a226455690a411aff8c08f9a rdf:first sg:person.010424535651.46
58 rdf:rest N6f6393bad04444b0a5adf6cf6dbc817e
59 Nf08d660d99dc4637bbaaf77906cba45c schema:name readcube_id
60 schema:value 3f1a944d520933ece04c8709c678fc9c5238747c14aff75330d23982e14e37f7
61 rdf:type schema:PropertyValue
62 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
63 schema:name Psychology and Cognitive Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
66 schema:name Psychology
67 rdf:type schema:DefinedTerm
68 sg:journal.1052482 schema:issn 1029-8479
69 1126-6708
70 schema:name Journal of High Energy Physics
71 rdf:type schema:Periodical
72 sg:person.010424535651.46 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
73 schema:familyName Chacaltana
74 schema:givenName Oscar
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424535651.46
76 rdf:type schema:Person
77 sg:person.01141564604.58 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
78 schema:familyName Distler
79 schema:givenName Jacques
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141564604.58
81 rdf:type schema:Person
82 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
83 https://doi.org/10.1007/jhep01(2010)088
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
86 https://doi.org/10.1007/jhep08(2010)107
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
89 https://doi.org/10.1007/jhep09(2010)063
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
92 https://doi.org/10.1007/s00220-009-0938-6
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
95 https://doi.org/10.1007/s11005-010-0369-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
98 https://doi.org/10.1088/1126-6708/2007/12/088
99 rdf:type schema:CreativeWork
100 sg:pub.10.1088/1126-6708/2008/01/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033149929
101 https://doi.org/10.1088/1126-6708/2008/01/037
102 rdf:type schema:CreativeWork
103 sg:pub.10.1088/1126-6708/2008/01/074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867495
104 https://doi.org/10.1088/1126-6708/2008/01/074
105 rdf:type schema:CreativeWork
106 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
107 https://doi.org/10.1088/1126-6708/2009/07/067
108 rdf:type schema:CreativeWork
109 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
110 https://doi.org/10.1088/1126-6708/2009/09/052
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1006/aphy.1994.1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000225102
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0550-3213(95)00661-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039288570
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0550-3213(97)00039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211996
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0264-9381/17/3/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028962007
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.75.1699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016875528
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/2372999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899586
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
125 schema:name Theory Group and Texas Cosmology Center, Department of Physics, University of Texas at Austin, 78712, Austin, TX, U.S.A.
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...