Conformal boundary conditions, loop gravity and the continuum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Wolfgang Wieland

ABSTRACT

In this paper, we will make an attempt to clarify the relation between three-dimensional euclidean loop quantum gravity with vanishing cosmological constant and quantum field theory in the continuum. We will argue, in particular, that in three spacetime dimensions the discrete spectra for the geometric boundary observables that we find in loop quantum gravity can be understood from the quantisation of a conformal boundary field theory in the continuum without ever introducing spin networks or triangulations of space. At a technical level, the starting point is the Hamiltonian formalism for general relativity in regions with boundaries at finite distance. At these finite boundaries, we choose specific conformal boundary conditions (the boundary is a minimal surface) that are derived from a boundary field theory for an SU(2) boundary spinor, which is minimally coupled to the spin connection in the bulk. The resulting boundary equations of motion define a conformal field theory with vanishing central charge. We will quantise this boundary field theory and show that the length of a one-dimensional cross section of the boundary has a discrete spectrum. In addition, we will introduce a new class of coherent states, study the quasi-local observables that generate the quasi-local Virasoro algebra and discuss some strategies to evaluate the partition function of the theory. More... »

PAGES

89

References to SciGraph publications

  • 2017-11. Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum in ANNALES HENRI POINCARÉ
  • 2015-04. One loop partition function of three-dimensional flat gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1986-06. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-12. The Spin-Foam Approach to Quantum Gravity in LIVING REVIEWS IN RELATIVITY
  • 1999-04. The Large-N Limit of Superconformal Field Theories and Supergravity in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2016-09. Local subsystems in gauge theory and gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02. Quantum gravity partition functions in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02. Local phase space and edge modes for diffeomorphism-invariant theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-12. Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article in LIVING REVIEWS IN RELATIVITY
  • 2015-11. Characters of the BMS Group in Three Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    10

    VOLUME

    2018

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2018)089

    DOI

    http://dx.doi.org/10.1007/jhep10(2018)089

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107662460


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wieland", 
            "givenName": "Wolfgang", 
            "id": "sg:person.013603112153.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603112153.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1063/1.3675465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002860588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-015-2408-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005741489", 
              "https://doi.org/10.1007/s00220-015-2408-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.531037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006128799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.104006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007403309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.104006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007403309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.12942/lrr-2004-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007530116", 
              "https://doi.org/10.12942/lrr-2004-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00531-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008856845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.084041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014429194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.084041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014429194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015849369", 
              "https://doi.org/10.1007/jhep04(2015)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015849369", 
              "https://doi.org/10.1007/jhep04(2015)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.61.084027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016003673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.61.084027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016003673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/19/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017399187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/19/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017399187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3054277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025347972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2016)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026649379", 
              "https://doi.org/10.1007/jhep09(2016)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2016)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026649379", 
              "https://doi.org/10.1007/jhep09(2016)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027635149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031786942", 
              "https://doi.org/10.1007/bf01211590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031786942", 
              "https://doi.org/10.1007/bf01211590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.12942/lrr-2013-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032226997", 
              "https://doi.org/10.12942/lrr-2013-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.76.084028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033593656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.76.084028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033593656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035448277", 
              "https://doi.org/10.1007/jhep02(2010)029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035448277", 
              "https://doi.org/10.1007/jhep02(2010)029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(02)01559-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036068597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026654312961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042716891", 
              "https://doi.org/10.1023/a:1026654312961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/32/13/135016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047589270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/29/4/045007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050627979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.2850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.7.2850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060705835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.121503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060708908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.121503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060708908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.086009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.086009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789813220003_0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086951766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-017-0598-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090855731", 
              "https://doi.org/10.1007/s00023-017-0598-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-017-0598-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090855731", 
              "https://doi.org/10.1007/s00023-017-0598-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6382/aa8d06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091808089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2017.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091833679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511846373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098736177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/1321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098932065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100858013", 
              "https://doi.org/10.1007/jhep02(2018)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.044052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101276205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.044052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101276205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2018.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101696392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6382/aaba11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101796492"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "In this paper, we will make an attempt to clarify the relation between three-dimensional euclidean loop quantum gravity with vanishing cosmological constant and quantum field theory in the continuum. We will argue, in particular, that in three spacetime dimensions the discrete spectra for the geometric boundary observables that we find in loop quantum gravity can be understood from the quantisation of a conformal boundary field theory in the continuum without ever introducing spin networks or triangulations of space. At a technical level, the starting point is the Hamiltonian formalism for general relativity in regions with boundaries at finite distance. At these finite boundaries, we choose specific conformal boundary conditions (the boundary is a minimal surface) that are derived from a boundary field theory for an SU(2) boundary spinor, which is minimally coupled to the spin connection in the bulk. The resulting boundary equations of motion define a conformal field theory with vanishing central charge. We will quantise this boundary field theory and show that the length of a one-dimensional cross section of the boundary has a discrete spectrum. In addition, we will introduce a new class of coherent states, study the quasi-local observables that generate the quasi-local Virasoro algebra and discuss some strategies to evaluate the partition function of the theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep10(2018)089", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Conformal boundary conditions, loop gravity and the continuum", 
        "pagination": "89", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46f88ce5e066f18f4c389f0f6670a3666d9276987ef9c70de62f522dfb934542"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2018)089"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107662460"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2018)089", 
          "https://app.dimensions.ai/details/publication/pub.1107662460"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP10%282018%29089"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2018)089'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2018)089'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2018)089'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2018)089'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2018)089 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6c362de2c85642be938cd0b1e183015c
    4 schema:citation sg:pub.10.1007/bf01211590
    5 sg:pub.10.1007/jhep02(2010)029
    6 sg:pub.10.1007/jhep02(2018)021
    7 sg:pub.10.1007/jhep04(2015)178
    8 sg:pub.10.1007/jhep09(2016)102
    9 sg:pub.10.1007/s00023-017-0598-6
    10 sg:pub.10.1007/s00220-015-2408-7
    11 sg:pub.10.1023/a:1026654312961
    12 sg:pub.10.12942/lrr-2004-4
    13 sg:pub.10.12942/lrr-2013-3
    14 https://doi.org/10.1016/j.nuclphysb.2014.10.002
    15 https://doi.org/10.1016/j.nuclphysb.2017.09.010
    16 https://doi.org/10.1016/j.nuclphysb.2018.02.022
    17 https://doi.org/10.1016/s0370-2693(02)01559-9
    18 https://doi.org/10.1016/s0550-3213(01)00531-4
    19 https://doi.org/10.1017/cbo9780511846373
    20 https://doi.org/10.1063/1.3054277
    21 https://doi.org/10.1063/1.3675465
    22 https://doi.org/10.1063/1.531037
    23 https://doi.org/10.1088/0264-9381/22/19/r01
    24 https://doi.org/10.1088/0264-9381/29/4/045007
    25 https://doi.org/10.1088/0264-9381/32/13/135016
    26 https://doi.org/10.1088/1361-6382/aa8d06
    27 https://doi.org/10.1088/1361-6382/aaba11
    28 https://doi.org/10.1103/physrevd.47.1407
    29 https://doi.org/10.1103/physrevd.61.084027
    30 https://doi.org/10.1103/physrevd.7.2850
    31 https://doi.org/10.1103/physrevd.76.084028
    32 https://doi.org/10.1103/physrevd.77.104006
    33 https://doi.org/10.1103/physrevd.82.084041
    34 https://doi.org/10.1103/physrevd.87.121503
    35 https://doi.org/10.1103/physrevd.94.086009
    36 https://doi.org/10.1103/physrevd.97.044052
    37 https://doi.org/10.1142/1321
    38 https://doi.org/10.1142/9789813220003_0005
    39 https://doi.org/10.4310/atmp.1998.v2.n2.a2
    40 schema:datePublished 2018-10
    41 schema:datePublishedReg 2018-10-01
    42 schema:description In this paper, we will make an attempt to clarify the relation between three-dimensional euclidean loop quantum gravity with vanishing cosmological constant and quantum field theory in the continuum. We will argue, in particular, that in three spacetime dimensions the discrete spectra for the geometric boundary observables that we find in loop quantum gravity can be understood from the quantisation of a conformal boundary field theory in the continuum without ever introducing spin networks or triangulations of space. At a technical level, the starting point is the Hamiltonian formalism for general relativity in regions with boundaries at finite distance. At these finite boundaries, we choose specific conformal boundary conditions (the boundary is a minimal surface) that are derived from a boundary field theory for an SU(2) boundary spinor, which is minimally coupled to the spin connection in the bulk. The resulting boundary equations of motion define a conformal field theory with vanishing central charge. We will quantise this boundary field theory and show that the length of a one-dimensional cross section of the boundary has a discrete spectrum. In addition, we will introduce a new class of coherent states, study the quasi-local observables that generate the quasi-local Virasoro algebra and discuss some strategies to evaluate the partition function of the theory.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N814ee65718324de688e3bfe8b4cb1f28
    47 Ncf751636be5c496d9626b27cfcb43ff6
    48 sg:journal.1052482
    49 schema:name Conformal boundary conditions, loop gravity and the continuum
    50 schema:pagination 89
    51 schema:productId N15da1846a73b48c1a7d939ae58b39140
    52 N4a1d7f4355324cdb96993702ec16ca29
    53 N60e42648c5294a13a4a6275271368931
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107662460
    55 https://doi.org/10.1007/jhep10(2018)089
    56 schema:sdDatePublished 2019-04-10T20:11
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Nf496c7328cca43cfa4d58a19bb1595bd
    59 schema:url https://link.springer.com/10.1007%2FJHEP10%282018%29089
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N15da1846a73b48c1a7d939ae58b39140 schema:name doi
    64 schema:value 10.1007/jhep10(2018)089
    65 rdf:type schema:PropertyValue
    66 N4a1d7f4355324cdb96993702ec16ca29 schema:name readcube_id
    67 schema:value 46f88ce5e066f18f4c389f0f6670a3666d9276987ef9c70de62f522dfb934542
    68 rdf:type schema:PropertyValue
    69 N60e42648c5294a13a4a6275271368931 schema:name dimensions_id
    70 schema:value pub.1107662460
    71 rdf:type schema:PropertyValue
    72 N6c362de2c85642be938cd0b1e183015c rdf:first sg:person.013603112153.26
    73 rdf:rest rdf:nil
    74 N814ee65718324de688e3bfe8b4cb1f28 schema:issueNumber 10
    75 rdf:type schema:PublicationIssue
    76 Ncf751636be5c496d9626b27cfcb43ff6 schema:volumeNumber 2018
    77 rdf:type schema:PublicationVolume
    78 Nf496c7328cca43cfa4d58a19bb1595bd schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1052482 schema:issn 1029-8479
    87 1126-6708
    88 schema:name Journal of High Energy Physics
    89 rdf:type schema:Periodical
    90 sg:person.013603112153.26 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    91 schema:familyName Wieland
    92 schema:givenName Wolfgang
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603112153.26
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf01211590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031786942
    96 https://doi.org/10.1007/bf01211590
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/jhep02(2010)029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035448277
    99 https://doi.org/10.1007/jhep02(2010)029
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/jhep02(2018)021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100858013
    102 https://doi.org/10.1007/jhep02(2018)021
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/jhep04(2015)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015849369
    105 https://doi.org/10.1007/jhep04(2015)178
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/jhep09(2016)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649379
    108 https://doi.org/10.1007/jhep09(2016)102
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00023-017-0598-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090855731
    111 https://doi.org/10.1007/s00023-017-0598-6
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00220-015-2408-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005741489
    114 https://doi.org/10.1007/s00220-015-2408-7
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1023/a:1026654312961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042716891
    117 https://doi.org/10.1023/a:1026654312961
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.12942/lrr-2004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007530116
    120 https://doi.org/10.12942/lrr-2004-4
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.12942/lrr-2013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032226997
    123 https://doi.org/10.12942/lrr-2013-3
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.nuclphysb.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027635149
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.nuclphysb.2017.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091833679
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.nuclphysb.2018.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101696392
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/s0370-2693(02)01559-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036068597
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0550-3213(01)00531-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008856845
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1017/cbo9780511846373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098736177
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.3054277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025347972
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.3675465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002860588
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.531037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006128799
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1088/0264-9381/22/19/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017399187
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1088/0264-9381/29/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050627979
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/0264-9381/32/13/135016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047589270
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/1361-6382/aa8d06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091808089
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/1361-6382/aaba11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101796492
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevd.47.1407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701008
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevd.61.084027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016003673
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevd.7.2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705835
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevd.76.084028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033593656
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevd.77.104006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007403309
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevd.82.084041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014429194
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevd.87.121503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060708908
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevd.94.086009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714303
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevd.97.044052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101276205
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1142/1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098932065
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1142/9789813220003_0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086951766
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.4310/atmp.1998.v2.n2.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456894
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    178 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...