Newton-Cartan gravity and torsion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

Eric Bergshoeff, Athanasios Chatzistavrakidis, Luca Romano, Jan Rosseel

ABSTRACT

We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity. More... »

PAGES

194

References to SciGraph publications

  • 2015-07. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06. Physical stress, mass, and energy for non-relativistic matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-04. A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11. Newton-Cartan supergravity with torsion and Schrödinger supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2017)194

    DOI

    http://dx.doi.org/10.1007/jhep10(2017)194

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092413940


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bergshoeff", 
            "givenName": "Eric", 
            "id": "sg:person.015256111017.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256111017.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rudjer Boskovic Institute", 
              "id": "https://www.grid.ac/institutes/grid.4905.8", 
              "name": [
                "Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands", 
                "Division of Theoretical Physics, Rudjer Bo\u0161kovi\u0107 Institute, Bijeni\u010dka 54, 10000, Zagreb, Croatia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chatzistavrakidis", 
            "givenName": "Athanasios", 
            "id": "sg:person.011464641066.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464641066.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Romano", 
            "givenName": "Luca", 
            "id": "sg:person.010242250755.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242250755.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rosseel", 
            "givenName": "Jan", 
            "id": "sg:person.011102436565.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102436565.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.114.016802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002679630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.016802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002679630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015135969", 
              "https://doi.org/10.1007/jhep11(2015)180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4937445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015961034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)00584-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018166711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027191937", 
              "https://doi.org/10.1007/jhep07(2015)155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027191937", 
              "https://doi.org/10.1007/jhep07(2015)155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/32/13/135017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027215617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029592354", 
              "https://doi.org/10.1007/jhep04(2016)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/28/10/105011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030519107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.045030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043528425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.045030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043528425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045861337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045861337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/32/20/205003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059063315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a1505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a1505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.31.1841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060692465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.31.1841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060692465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.105023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.105023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2017)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086072781", 
              "https://doi.org/10.1007/jhep06(2017)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6382/aa83d4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091034438"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schr\u00f6dinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schr\u00f6dinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schr\u00f6dinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep10(2017)194", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "name": "Newton-Cartan gravity and torsion", 
        "pagination": "194", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa12a8d0ab2a802f76ce3c2110e1eb215f9682149f324933307146877a3f5a97"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2017)194"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092413940"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2017)194", 
          "https://app.dimensions.ai/details/publication/pub.1092413940"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000571.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP10%282017%29194"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)194'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)194'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)194'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)194'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2017)194 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nba904eb5cf9f4ff59b9251fc9fb6e6f4
    4 schema:citation sg:pub.10.1007/jhep04(2016)145
    5 sg:pub.10.1007/jhep06(2017)089
    6 sg:pub.10.1007/jhep07(2015)155
    7 sg:pub.10.1007/jhep11(2015)180
    8 https://doi.org/10.1016/0550-3213(94)00584-2
    9 https://doi.org/10.1063/1.4937445
    10 https://doi.org/10.1088/0264-9381/28/10/105011
    11 https://doi.org/10.1088/0264-9381/32/13/135017
    12 https://doi.org/10.1088/0264-9381/32/20/205003
    13 https://doi.org/10.1088/1361-6382/aa83d4
    14 https://doi.org/10.1103/physrev.135.a1505
    15 https://doi.org/10.1103/physrevd.31.1841
    16 https://doi.org/10.1103/physrevd.89.061901
    17 https://doi.org/10.1103/physrevd.91.045030
    18 https://doi.org/10.1103/physrevd.94.105023
    19 https://doi.org/10.1103/physrevlett.114.016802
    20 schema:datePublished 2017-10
    21 schema:datePublishedReg 2017-10-01
    22 schema:description We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Na7d928cd18984d17bf632d3b73efd38e
    27 Nb6d4cd80ee774eae98adaca890486775
    28 sg:journal.1052482
    29 schema:name Newton-Cartan gravity and torsion
    30 schema:pagination 194
    31 schema:productId N5e0c03d22710448d84aca146c0342055
    32 N84f71d0f50784c94834d9651bed004f1
    33 Nfbaf81ee7f1945c9b1375c65904f7831
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092413940
    35 https://doi.org/10.1007/jhep10(2017)194
    36 schema:sdDatePublished 2019-04-10T16:51
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N16d9cc9e65cf4b4abb200557b89f3644
    39 schema:url https://link.springer.com/10.1007%2FJHEP10%282017%29194
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N05eb4c6b6812475b95c698f844a600c8 rdf:first sg:person.011464641066.52
    44 rdf:rest N12e7bf6f1c7c49b681f55a9075f6a6e1
    45 N12e7bf6f1c7c49b681f55a9075f6a6e1 rdf:first sg:person.010242250755.88
    46 rdf:rest Na548c24df0c54815a9593611f8d93863
    47 N16d9cc9e65cf4b4abb200557b89f3644 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N5e0c03d22710448d84aca146c0342055 schema:name dimensions_id
    50 schema:value pub.1092413940
    51 rdf:type schema:PropertyValue
    52 N84f71d0f50784c94834d9651bed004f1 schema:name readcube_id
    53 schema:value aa12a8d0ab2a802f76ce3c2110e1eb215f9682149f324933307146877a3f5a97
    54 rdf:type schema:PropertyValue
    55 Na548c24df0c54815a9593611f8d93863 rdf:first sg:person.011102436565.43
    56 rdf:rest rdf:nil
    57 Na7d928cd18984d17bf632d3b73efd38e schema:issueNumber 10
    58 rdf:type schema:PublicationIssue
    59 Nb6d4cd80ee774eae98adaca890486775 schema:volumeNumber 2017
    60 rdf:type schema:PublicationVolume
    61 Nba904eb5cf9f4ff59b9251fc9fb6e6f4 rdf:first sg:person.015256111017.10
    62 rdf:rest N05eb4c6b6812475b95c698f844a600c8
    63 Nfbaf81ee7f1945c9b1375c65904f7831 schema:name doi
    64 schema:value 10.1007/jhep10(2017)194
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1052482 schema:issn 1029-8479
    73 1126-6708
    74 schema:name Journal of High Energy Physics
    75 rdf:type schema:Periodical
    76 sg:person.010242250755.88 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    77 schema:familyName Romano
    78 schema:givenName Luca
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242250755.88
    80 rdf:type schema:Person
    81 sg:person.011102436565.43 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
    82 schema:familyName Rosseel
    83 schema:givenName Jan
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011102436565.43
    85 rdf:type schema:Person
    86 sg:person.011464641066.52 schema:affiliation https://www.grid.ac/institutes/grid.4905.8
    87 schema:familyName Chatzistavrakidis
    88 schema:givenName Athanasios
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464641066.52
    90 rdf:type schema:Person
    91 sg:person.015256111017.10 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    92 schema:familyName Bergshoeff
    93 schema:givenName Eric
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256111017.10
    95 rdf:type schema:Person
    96 sg:pub.10.1007/jhep04(2016)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029592354
    97 https://doi.org/10.1007/jhep04(2016)145
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/jhep06(2017)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072781
    100 https://doi.org/10.1007/jhep06(2017)089
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/jhep07(2015)155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027191937
    103 https://doi.org/10.1007/jhep07(2015)155
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep11(2015)180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015135969
    106 https://doi.org/10.1007/jhep11(2015)180
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0550-3213(94)00584-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018166711
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1063/1.4937445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015961034
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0264-9381/28/10/105011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030519107
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0264-9381/32/13/135017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027215617
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/0264-9381/32/20/205003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059063315
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1088/1361-6382/aa83d4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091034438
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrev.135.a1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428918
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevd.31.1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060692465
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physrevd.89.061901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045861337
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevd.91.045030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043528425
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevd.94.105023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714573
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrevlett.114.016802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002679630
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
    133 schema:name Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
    134 rdf:type schema:Organization
    135 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    136 schema:name Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.4905.8 schema:alternateName Rudjer Boskovic Institute
    139 schema:name Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
    140 Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...