Solving CFTs with weakly broken higher spin symmetry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

Luis F. Alday

ABSTRACT

The method of large spin perturbation theory allows to analyse conformal field theories (CFT) by turning the crossing equations into an algebraic problem. We apply this method to a generic CFT with weakly broken higher spin (HS) symmetry, to the first non-trivial order in the breaking parameter. We show that the spectrum of broken currents, for any value of the spin, follows from crossing symmetry. After discussing a generic model of a single scalar field, we focus on vector models with O(N ) global symmetry. We rediscover the spectrum of several models, including the O(N ) Wilson-Fisher model around four dimensions, the large O(N ) model in 2 < d < 4 and cubic models around six dimensions, not necessarily unitary. We also discuss models where the fundamental field is not part of the spectrum. Examples of this are weakly coupled gauge theories and our method gives an on-shell gauge invariant way to study them. At first order in the coupling constant we show that again the spectrum follows from crossing symmetry, to all values of the spin. Our method provides an alternative to usual perturbation theory without any reference to a Lagrangian. More... »

PAGES

161

Journal

TITLE

Journal of High Energy Physics

ISSUE

10

VOLUME

2017

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep10(2017)161

DOI

http://dx.doi.org/10.1007/jhep10(2017)161

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092343222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alday", 
        "givenName": "Luis F.", 
        "id": "sg:person.012721511661.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721511661.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/2008/12/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002615366", 
          "https://doi.org/10.1088/1126-6708/2008/12/031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2015)101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006694700", 
          "https://doi.org/10.1007/jhep11(2015)101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/46/21/214011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007147027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2013)140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010554845", 
          "https://doi.org/10.1007/jhep11(2013)140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2013)004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013561623", 
          "https://doi.org/10.1007/jhep12(2013)004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2013)004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013561623", 
          "https://doi.org/10.1007/jhep12(2013)004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2017)058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016616027", 
          "https://doi.org/10.1007/jhep01(2017)058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2017)058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016616027", 
          "https://doi.org/10.1007/jhep01(2017)058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2013)202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019307166", 
          "https://doi.org/10.1007/jhep10(2013)202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/48/29/29ft01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026399822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027686826", 
          "https://doi.org/10.1007/jhep11(2016)068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027686826", 
          "https://doi.org/10.1007/jhep11(2016)068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/11/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029426043", 
          "https://doi.org/10.1088/1126-6708/2007/11/019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(73)90446-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031873963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-012-2112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033339609", 
          "https://doi.org/10.1140/epjc/s10052-012-2112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.025018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037940960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.025018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037940960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2016)091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040776321", 
          "https://doi.org/10.1007/jhep06(2016)091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2016)091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040776321", 
          "https://doi.org/10.1007/jhep06(2016)091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90417-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041868890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90417-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041868890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043046962", 
          "https://doi.org/10.1007/jhep12(2015)071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043046962", 
          "https://doi.org/10.1007/jhep12(2015)071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(01)00013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046459085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/10/079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050036855", 
          "https://doi.org/10.1088/1126-6708/2009/10/079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/10/079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050036855", 
          "https://doi.org/10.1088/1126-6708/2009/10/079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2012)177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050845312", 
          "https://doi.org/10.1007/jhep10(2012)177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2012)037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051619510", 
          "https://doi.org/10.1007/jhep03(2012)037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.1610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.1610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.081601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.081601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2017)059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084744682", 
          "https://doi.org/10.1007/jhep04(2017)059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2017)157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085083906", 
          "https://doi.org/10.1007/jhep04(2017)157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2017)027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085209211", 
          "https://doi.org/10.1007/jhep05(2017)027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2017)011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085886129", 
          "https://doi.org/10.1007/jhep06(2017)011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091676725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091676725"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "The method of large spin perturbation theory allows to analyse conformal field theories (CFT) by turning the crossing equations into an algebraic problem. We apply this method to a generic CFT with weakly broken higher spin (HS) symmetry, to the first non-trivial order in the breaking parameter. We show that the spectrum of broken currents, for any value of the spin, follows from crossing symmetry. After discussing a generic model of a single scalar field, we focus on vector models with O(N ) global symmetry. We rediscover the spectrum of several models, including the O(N ) Wilson-Fisher model around four dimensions, the large O(N ) model in 2 < d < 4 and cubic models around six dimensions, not necessarily unitary. We also discuss models where the fundamental field is not part of the spectrum. Examples of this are weakly coupled gauge theories and our method gives an on-shell gauge invariant way to study them. At first order in the coupling constant we show that again the spectrum follows from crossing symmetry, to all values of the spin. Our method provides an alternative to usual perturbation theory without any reference to a Lagrangian.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep10(2017)161", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Solving CFTs with weakly broken higher spin symmetry", 
    "pagination": "161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99fc2c31bdcfd1acfc609180e784404aa9176c2bc359514df2cc4757101b8eed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep10(2017)161"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092343222"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep10(2017)161", 
      "https://app.dimensions.ai/details/publication/pub.1092343222"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP10%282017%29161"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)161'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)161'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)161'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2017)161'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep10(2017)161 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N911ba4b6162547f7b87b2e170b03e5c1
4 schema:citation sg:pub.10.1007/jhep01(2017)058
5 sg:pub.10.1007/jhep03(2012)037
6 sg:pub.10.1007/jhep04(2017)059
7 sg:pub.10.1007/jhep04(2017)157
8 sg:pub.10.1007/jhep05(2017)027
9 sg:pub.10.1007/jhep06(2016)091
10 sg:pub.10.1007/jhep06(2017)011
11 sg:pub.10.1007/jhep10(2012)177
12 sg:pub.10.1007/jhep10(2013)202
13 sg:pub.10.1007/jhep11(2013)140
14 sg:pub.10.1007/jhep11(2015)101
15 sg:pub.10.1007/jhep11(2016)068
16 sg:pub.10.1007/jhep12(2013)004
17 sg:pub.10.1007/jhep12(2015)071
18 sg:pub.10.1088/1126-6708/2007/11/019
19 sg:pub.10.1088/1126-6708/2008/12/031
20 sg:pub.10.1088/1126-6708/2009/10/079
21 sg:pub.10.1140/epjc/s10052-012-2112-0
22 https://doi.org/10.1016/0003-4916(73)90446-6
23 https://doi.org/10.1016/0370-1573(74)90023-4
24 https://doi.org/10.1016/0550-3213(93)90417-n
25 https://doi.org/10.1016/s0550-3213(01)00013-x
26 https://doi.org/10.1088/1751-8113/46/21/214011
27 https://doi.org/10.1088/1751-8113/48/29/29ft01
28 https://doi.org/10.1103/physrevd.90.025018
29 https://doi.org/10.1103/physrevlett.118.081601
30 https://doi.org/10.1103/physrevlett.119.111601
31 https://doi.org/10.1103/physrevlett.40.1610
32 schema:datePublished 2017-10
33 schema:datePublishedReg 2017-10-01
34 schema:description The method of large spin perturbation theory allows to analyse conformal field theories (CFT) by turning the crossing equations into an algebraic problem. We apply this method to a generic CFT with weakly broken higher spin (HS) symmetry, to the first non-trivial order in the breaking parameter. We show that the spectrum of broken currents, for any value of the spin, follows from crossing symmetry. After discussing a generic model of a single scalar field, we focus on vector models with O(N ) global symmetry. We rediscover the spectrum of several models, including the O(N ) Wilson-Fisher model around four dimensions, the large O(N ) model in 2 < d < 4 and cubic models around six dimensions, not necessarily unitary. We also discuss models where the fundamental field is not part of the spectrum. Examples of this are weakly coupled gauge theories and our method gives an on-shell gauge invariant way to study them. At first order in the coupling constant we show that again the spectrum follows from crossing symmetry, to all values of the spin. Our method provides an alternative to usual perturbation theory without any reference to a Lagrangian.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N742b30245f9f4e0393569493466928d3
39 N8e4517c8bb734d6981baf94505a1be50
40 sg:journal.1052482
41 schema:name Solving CFTs with weakly broken higher spin symmetry
42 schema:pagination 161
43 schema:productId N247504e37b874d4ba35c04f01147c1dd
44 N5d81ee8bb5774b2db0200b05fa2d402d
45 N7316c1396d2d4e1f8feaa6cdb45d8115
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092343222
47 https://doi.org/10.1007/jhep10(2017)161
48 schema:sdDatePublished 2019-04-10T20:55
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N75944f8720de41b5989085aa5249ceb0
51 schema:url https://link.springer.com/10.1007%2FJHEP10%282017%29161
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N247504e37b874d4ba35c04f01147c1dd schema:name doi
56 schema:value 10.1007/jhep10(2017)161
57 rdf:type schema:PropertyValue
58 N5d81ee8bb5774b2db0200b05fa2d402d schema:name readcube_id
59 schema:value 99fc2c31bdcfd1acfc609180e784404aa9176c2bc359514df2cc4757101b8eed
60 rdf:type schema:PropertyValue
61 N7316c1396d2d4e1f8feaa6cdb45d8115 schema:name dimensions_id
62 schema:value pub.1092343222
63 rdf:type schema:PropertyValue
64 N742b30245f9f4e0393569493466928d3 schema:volumeNumber 2017
65 rdf:type schema:PublicationVolume
66 N75944f8720de41b5989085aa5249ceb0 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N8e4517c8bb734d6981baf94505a1be50 schema:issueNumber 10
69 rdf:type schema:PublicationIssue
70 N911ba4b6162547f7b87b2e170b03e5c1 rdf:first sg:person.012721511661.95
71 rdf:rest rdf:nil
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1052482 schema:issn 1029-8479
79 1126-6708
80 schema:name Journal of High Energy Physics
81 rdf:type schema:Periodical
82 sg:person.012721511661.95 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
83 schema:familyName Alday
84 schema:givenName Luis F.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721511661.95
86 rdf:type schema:Person
87 sg:pub.10.1007/jhep01(2017)058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016616027
88 https://doi.org/10.1007/jhep01(2017)058
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/jhep03(2012)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051619510
91 https://doi.org/10.1007/jhep03(2012)037
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/jhep04(2017)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084744682
94 https://doi.org/10.1007/jhep04(2017)059
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/jhep04(2017)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085083906
97 https://doi.org/10.1007/jhep04(2017)157
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/jhep05(2017)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085209211
100 https://doi.org/10.1007/jhep05(2017)027
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/jhep06(2016)091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040776321
103 https://doi.org/10.1007/jhep06(2016)091
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/jhep06(2017)011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886129
106 https://doi.org/10.1007/jhep06(2017)011
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/jhep10(2012)177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050845312
109 https://doi.org/10.1007/jhep10(2012)177
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep10(2013)202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307166
112 https://doi.org/10.1007/jhep10(2013)202
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/jhep11(2013)140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010554845
115 https://doi.org/10.1007/jhep11(2013)140
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep11(2015)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006694700
118 https://doi.org/10.1007/jhep11(2015)101
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/jhep11(2016)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027686826
121 https://doi.org/10.1007/jhep11(2016)068
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/jhep12(2013)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013561623
124 https://doi.org/10.1007/jhep12(2013)004
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/jhep12(2015)071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043046962
127 https://doi.org/10.1007/jhep12(2015)071
128 rdf:type schema:CreativeWork
129 sg:pub.10.1088/1126-6708/2007/11/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029426043
130 https://doi.org/10.1088/1126-6708/2007/11/019
131 rdf:type schema:CreativeWork
132 sg:pub.10.1088/1126-6708/2008/12/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002615366
133 https://doi.org/10.1088/1126-6708/2008/12/031
134 rdf:type schema:CreativeWork
135 sg:pub.10.1088/1126-6708/2009/10/079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050036855
136 https://doi.org/10.1088/1126-6708/2009/10/079
137 rdf:type schema:CreativeWork
138 sg:pub.10.1140/epjc/s10052-012-2112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033339609
139 https://doi.org/10.1140/epjc/s10052-012-2112-0
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0003-4916(73)90446-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031873963
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0370-1573(74)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053661698
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0550-3213(93)90417-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1041868890
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0550-3213(01)00013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046459085
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/1751-8113/46/21/214011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007147027
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/1751-8113/48/29/29ft01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026399822
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevd.90.025018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037940960
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.118.081601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083935662
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.119.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091676725
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.40.1610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782552
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
162 schema:name Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...