Ontology type: schema:ScholarlyArticle Open Access: True
2015-10-06
AUTHORSPrarit Agarwal, Kenneth Intriligator, Jaewon Song
ABSTRACTWe discuss two infinite classes of 4d supersymmetric theories, TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document}, labelled by an arbitrary non-negative integer, m. The TN(m) theory arises from the 6d, AN − 1 type N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, −m); the m = 0 case is the N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric TN theory. The novelty is the negative-degree line bundle. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories likewise arise from the 6d N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) TN(m) theories. The TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can be represented, in various duality frames, as quiver gauge theories, built from TN components via gauging and nilpotent Higgsing. We analyze the RG flow of the UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with Nf = 2Nc. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} duals have different duality frame quiver representations, with 2m + 1 gauge nodes. More... »
PAGES35
http://scigraph.springernature.com/pub.10.1007/jhep10(2015)035
DOIhttp://dx.doi.org/10.1007/jhep10(2015)035
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024402067
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
],
"type": "Organization"
},
"familyName": "Agarwal",
"givenName": "Prarit",
"id": "sg:person.011336674601.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
],
"type": "Organization"
},
"familyName": "Intriligator",
"givenName": "Kenneth",
"id": "sg:person.011224211515.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011224211515.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.266100.3",
"name": [
"Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Jaewon",
"id": "sg:person.016403722241.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep08(2014)121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030354515",
"https://doi.org/10.1007/jhep08(2014)121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004156761",
"https://doi.org/10.1007/jhep06(2015)047"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2013)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005532912",
"https://doi.org/10.1007/jhep07(2013)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2015)075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001737210",
"https://doi.org/10.1007/jhep05(2015)075"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051863349",
"https://doi.org/10.1007/jhep01(2014)142"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2013)137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044208279",
"https://doi.org/10.1007/jhep08(2013)137"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010897089",
"https://doi.org/10.1007/jhep10(2012)189"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2013)110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040546683",
"https://doi.org/10.1007/jhep02(2013)110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2015)007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003468441",
"https://doi.org/10.1007/jhep09(2015)007"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)227",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026901583",
"https://doi.org/10.1007/jhep10(2013)227"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2014)133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017023640",
"https://doi.org/10.1007/jhep03(2014)133"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001669470",
"https://doi.org/10.1007/jhep06(2012)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/07/067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047269577",
"https://doi.org/10.1088/1126-6708/2009/07/067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2010)106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009836669",
"https://doi.org/10.1007/jhep06(2010)106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2015)044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043871088",
"https://doi.org/10.1007/jhep01(2015)044"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007221034",
"https://doi.org/10.1007/jhep10(2012)129"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2014)131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009550187",
"https://doi.org/10.1007/jhep07(2014)131"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2014)154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038967054",
"https://doi.org/10.1007/jhep04(2014)154"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032453331",
"https://doi.org/10.1007/jhep01(2010)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2013)171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033501882",
"https://doi.org/10.1007/jhep03(2013)171"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-012-1607-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049095812",
"https://doi.org/10.1007/s00220-012-1607-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030213861",
"https://doi.org/10.1007/jhep01(2013)022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2010)032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025314613",
"https://doi.org/10.1007/jhep03(2010)032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027602010",
"https://doi.org/10.1007/jhep01(2014)001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/09/086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018116770",
"https://doi.org/10.1088/1126-6708/2009/09/086"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2015)173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050067337",
"https://doi.org/10.1007/jhep04(2015)173"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2013)056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010569175",
"https://doi.org/10.1007/jhep06(2013)056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2015)049",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053394950",
"https://doi.org/10.1007/jhep03(2015)049"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2015)089",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019125207",
"https://doi.org/10.1007/jhep02(2015)089"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026965803",
"https://doi.org/10.1007/jhep10(2013)010"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2015)073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010218429",
"https://doi.org/10.1007/jhep07(2015)073"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0258-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040519445",
"https://doi.org/10.1007/s00220-007-0258-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2014)036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033007760",
"https://doi.org/10.1007/jhep04(2014)036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2010)099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013246104",
"https://doi.org/10.1007/jhep11(2010)099"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-10-06",
"datePublishedReg": "2015-10-06",
"description": "We discuss two infinite classes of 4d supersymmetric theories, TN(m) and UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document}, labelled by an arbitrary non-negative integer, m. The TN(m) theory arises from the 6d, AN \u2212 1 type N=20\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(2,0\\right) $$\\end{document} theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, \u2212m); the m = 0 case is the N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} supersymmetric TN theory. The novelty is the negative-degree line bundle. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories likewise arise from the 6d N=20\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(2,0\\right) $$\\end{document} theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) TN(m) theories. The TN(m) and UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories can be represented, in various duality frames, as quiver gauge theories, built from TN components via gauging and nilpotent Higgsing. We analyze the RG flow of the UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with Nf = 2Nc. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} duals have different duality frame quiver representations, with 2m + 1 gauge nodes.",
"genre": "article",
"id": "sg:pub.10.1007/jhep10(2015)035",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4322069",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2015"
}
],
"keywords": [
"line bundle",
"RG flow",
"IR SCFT",
"arbitrary non-negative integer",
"duality frame",
"infinite set",
"gauge theory",
"TN theories",
"infinite class",
"UV completion",
"supersymmetric theories",
"non-negative integers",
"different dualities",
"normal bundle",
"quartic superpotential",
"gauge nodes",
"theory",
"duality",
"Higgsing",
"SCFTs",
"superpotential",
"SQCD",
"dual",
"integers",
"gauging",
"sphere",
"class",
"bundles",
"representation",
"flow",
"set",
"novelty",
"nodes",
"frame",
"cases",
"degree",
"types",
"components",
"flavor",
"completion",
"NF",
"TN components"
],
"name": "Infinitely many N=1 dualities from m + 1 \u2212 m = 1",
"pagination": "35",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024402067"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep10(2015)035"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep10(2015)035",
"https://app.dimensions.ai/details/publication/pub.1024402067"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_666.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep10(2015)035"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'
This table displays all metadata directly associated to this object as RDF triples.
267 TRIPLES
21 PREDICATES
104 URIs
58 LITERALS
6 BLANK NODES