Infinitely many N=1 dualities from m + 1 − m = 1 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-06

AUTHORS

Prarit Agarwal, Kenneth Intriligator, Jaewon Song

ABSTRACT

We discuss two infinite classes of 4d supersymmetric theories, TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document}, labelled by an arbitrary non-negative integer, m. The TN(m) theory arises from the 6d, AN − 1 type N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, −m); the m = 0 case is the N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric TN theory. The novelty is the negative-degree line bundle. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories likewise arise from the 6d N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) TN(m) theories. The TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can be represented, in various duality frames, as quiver gauge theories, built from TN components via gauging and nilpotent Higgsing. We analyze the RG flow of the UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with Nf = 2Nc. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} duals have different duality frame quiver representations, with 2m + 1 gauge nodes. More... »

PAGES

35

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-09-18. New Seiberg dualities from 𝒩 = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-30. Quarter-BPS AdS5 solutions in M-theory with a T2 bundle over a Riemann surface in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-13. Mass-deformed TN as a linear quiver in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-29. Exactly marginal deformations and global symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-03. Bootstrapping the superconformal index with surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-28. M5 brane and four dimensional = 1 theories I in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-07. The = 1 superconformal index for class fixed points in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-30. The gravity duals of superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-14. N=1 theories of class Sk in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-28. New N = 1 dualities from M5-branes and outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-24. Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-29. 2d TQFT structure of the superconformal indices with outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-18. An E7 surprise in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-02. Generalized Hitchin system, spectral curve and =1 dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-17. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-08-21. Linear quivers and N = 1 SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06-01. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-30. Tinkertoys for the twisted D-series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-12. Four dimensional superconformal theories from M5 branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-07-25. Punctures from probe M5-branes and N = 1 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-09-01. Tinkertoys for the E6 theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-21. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-06-08. Theories of class S and new N = 1 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05-14. Gaiotto duality for the twisted A2N −1 series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-01. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-31. =1 geometries via M-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03-10. Quiver tails and N=1 SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2015)035

    DOI

    http://dx.doi.org/10.1007/jhep10(2015)035

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024402067


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agarwal", 
            "givenName": "Prarit", 
            "id": "sg:person.011336674601.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Intriligator", 
            "givenName": "Kenneth", 
            "id": "sg:person.011224211515.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011224211515.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jaewon", 
            "id": "sg:person.016403722241.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2014)121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030354515", 
              "https://doi.org/10.1007/jhep08(2014)121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2015)047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004156761", 
              "https://doi.org/10.1007/jhep06(2015)047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532912", 
              "https://doi.org/10.1007/jhep07(2013)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001737210", 
              "https://doi.org/10.1007/jhep05(2015)075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863349", 
              "https://doi.org/10.1007/jhep01(2014)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044208279", 
              "https://doi.org/10.1007/jhep08(2013)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010897089", 
              "https://doi.org/10.1007/jhep10(2012)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003468441", 
              "https://doi.org/10.1007/jhep09(2015)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026901583", 
              "https://doi.org/10.1007/jhep10(2013)227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017023640", 
              "https://doi.org/10.1007/jhep03(2014)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001669470", 
              "https://doi.org/10.1007/jhep06(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009836669", 
              "https://doi.org/10.1007/jhep06(2010)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043871088", 
              "https://doi.org/10.1007/jhep01(2015)044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007221034", 
              "https://doi.org/10.1007/jhep10(2012)129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009550187", 
              "https://doi.org/10.1007/jhep07(2014)131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038967054", 
              "https://doi.org/10.1007/jhep04(2014)154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033501882", 
              "https://doi.org/10.1007/jhep03(2013)171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030213861", 
              "https://doi.org/10.1007/jhep01(2013)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027602010", 
              "https://doi.org/10.1007/jhep01(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018116770", 
              "https://doi.org/10.1088/1126-6708/2009/09/086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050067337", 
              "https://doi.org/10.1007/jhep04(2015)173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2015)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053394950", 
              "https://doi.org/10.1007/jhep03(2015)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019125207", 
              "https://doi.org/10.1007/jhep02(2015)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026965803", 
              "https://doi.org/10.1007/jhep10(2013)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010218429", 
              "https://doi.org/10.1007/jhep07(2015)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033007760", 
              "https://doi.org/10.1007/jhep04(2014)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10-06", 
        "datePublishedReg": "2015-10-06", 
        "description": "We discuss two infinite classes of 4d supersymmetric theories, TN(m) and UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document}, labelled by an arbitrary non-negative integer, m. The TN(m) theory arises from the 6d, AN \u2212 1 type N=20\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(2,0\\right) $$\\end{document} theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, \u2212m); the m = 0 case is the N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} supersymmetric TN theory. The novelty is the negative-degree line bundle. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories likewise arise from the 6d N=20\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(2,0\\right) $$\\end{document} theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) TN(m) theories. The TN(m) and UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories can be represented, in various duality frames, as quiver gauge theories, built from TN components via gauging and nilpotent Higgsing. We analyze the RG flow of the UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with Nf = 2Nc. The UNm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{U}}_N^{(m)} $$\\end{document} duals have different duality frame quiver representations, with 2m + 1 gauge nodes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep10(2015)035", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4322069", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2015"
          }
        ], 
        "keywords": [
          "line bundle", 
          "RG flow", 
          "IR SCFT", 
          "arbitrary non-negative integer", 
          "duality frame", 
          "infinite set", 
          "gauge theory", 
          "TN theories", 
          "infinite class", 
          "UV completion", 
          "supersymmetric theories", 
          "non-negative integers", 
          "different dualities", 
          "normal bundle", 
          "quartic superpotential", 
          "gauge nodes", 
          "theory", 
          "duality", 
          "Higgsing", 
          "SCFTs", 
          "superpotential", 
          "SQCD", 
          "dual", 
          "integers", 
          "gauging", 
          "sphere", 
          "class", 
          "bundles", 
          "representation", 
          "flow", 
          "set", 
          "novelty", 
          "nodes", 
          "frame", 
          "cases", 
          "degree", 
          "types", 
          "components", 
          "flavor", 
          "completion", 
          "NF", 
          "TN components"
        ], 
        "name": "Infinitely many N=1 dualities from m + 1 \u2212 m = 1", 
        "pagination": "35", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024402067"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2015)035"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2015)035", 
          "https://app.dimensions.ai/details/publication/pub.1024402067"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_666.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep10(2015)035"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2015)035'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      21 PREDICATES      104 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2015)035 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author N22c5932d8c934e7fa5a89ff73c73f063
    7 schema:citation sg:pub.10.1007/jhep01(2010)088
    8 sg:pub.10.1007/jhep01(2013)022
    9 sg:pub.10.1007/jhep01(2014)001
    10 sg:pub.10.1007/jhep01(2014)142
    11 sg:pub.10.1007/jhep01(2015)044
    12 sg:pub.10.1007/jhep02(2013)110
    13 sg:pub.10.1007/jhep02(2015)089
    14 sg:pub.10.1007/jhep03(2010)032
    15 sg:pub.10.1007/jhep03(2013)171
    16 sg:pub.10.1007/jhep03(2014)133
    17 sg:pub.10.1007/jhep03(2015)049
    18 sg:pub.10.1007/jhep04(2014)036
    19 sg:pub.10.1007/jhep04(2014)154
    20 sg:pub.10.1007/jhep04(2015)173
    21 sg:pub.10.1007/jhep05(2015)075
    22 sg:pub.10.1007/jhep06(2010)106
    23 sg:pub.10.1007/jhep06(2012)005
    24 sg:pub.10.1007/jhep06(2013)056
    25 sg:pub.10.1007/jhep06(2015)047
    26 sg:pub.10.1007/jhep07(2013)107
    27 sg:pub.10.1007/jhep07(2014)131
    28 sg:pub.10.1007/jhep07(2015)073
    29 sg:pub.10.1007/jhep08(2012)034
    30 sg:pub.10.1007/jhep08(2013)137
    31 sg:pub.10.1007/jhep08(2014)121
    32 sg:pub.10.1007/jhep09(2015)007
    33 sg:pub.10.1007/jhep10(2012)129
    34 sg:pub.10.1007/jhep10(2012)189
    35 sg:pub.10.1007/jhep10(2013)010
    36 sg:pub.10.1007/jhep10(2013)227
    37 sg:pub.10.1007/jhep11(2010)099
    38 sg:pub.10.1007/s00220-007-0258-7
    39 sg:pub.10.1007/s00220-012-1607-8
    40 sg:pub.10.1088/1126-6708/2009/07/067
    41 sg:pub.10.1088/1126-6708/2009/09/086
    42 schema:datePublished 2015-10-06
    43 schema:datePublishedReg 2015-10-06
    44 schema:description We discuss two infinite classes of 4d supersymmetric theories, TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document}, labelled by an arbitrary non-negative integer, m. The TN(m) theory arises from the 6d, AN − 1 type N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, −m); the m = 0 case is the N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric TN theory. The novelty is the negative-degree line bundle. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories likewise arise from the 6d N=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,0\right) $$\end{document} theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) TN(m) theories. The TN(m) and UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can be represented, in various duality frames, as quiver gauge theories, built from TN components via gauging and nilpotent Higgsing. We analyze the RG flow of the UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with Nf = 2Nc. The UNm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{U}}_N^{(m)} $$\end{document} duals have different duality frame quiver representations, with 2m + 1 gauge nodes.
    45 schema:genre article
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N407e2171862a4a9d9a414e4680c4274d
    48 N8ca030e4eb0d4ada82edfc61756b80df
    49 sg:journal.1052482
    50 schema:keywords Higgsing
    51 IR SCFT
    52 NF
    53 RG flow
    54 SCFTs
    55 SQCD
    56 TN components
    57 TN theories
    58 UV completion
    59 arbitrary non-negative integer
    60 bundles
    61 cases
    62 class
    63 completion
    64 components
    65 degree
    66 different dualities
    67 dual
    68 duality
    69 duality frame
    70 flavor
    71 flow
    72 frame
    73 gauge nodes
    74 gauge theory
    75 gauging
    76 infinite class
    77 infinite set
    78 integers
    79 line bundle
    80 nodes
    81 non-negative integers
    82 normal bundle
    83 novelty
    84 quartic superpotential
    85 representation
    86 set
    87 sphere
    88 superpotential
    89 supersymmetric theories
    90 theory
    91 types
    92 schema:name Infinitely many N=1 dualities from m + 1 − m = 1
    93 schema:pagination 35
    94 schema:productId N28ceaf3fb1f64482827ccee3208cc5b2
    95 N5f4bc0add43847fa81ed75748a52c26e
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024402067
    97 https://doi.org/10.1007/jhep10(2015)035
    98 schema:sdDatePublished 2022-08-04T17:02
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Nd1975fcc3c8940b5b1c3ff390579299e
    101 schema:url https://doi.org/10.1007/jhep10(2015)035
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N2039387baa684917ba39cb0b24da3cdc rdf:first sg:person.011224211515.87
    106 rdf:rest Nc38ec4869a48484a8ced1b9ae1430234
    107 N22c5932d8c934e7fa5a89ff73c73f063 rdf:first sg:person.011336674601.46
    108 rdf:rest N2039387baa684917ba39cb0b24da3cdc
    109 N28ceaf3fb1f64482827ccee3208cc5b2 schema:name dimensions_id
    110 schema:value pub.1024402067
    111 rdf:type schema:PropertyValue
    112 N407e2171862a4a9d9a414e4680c4274d schema:issueNumber 10
    113 rdf:type schema:PublicationIssue
    114 N5f4bc0add43847fa81ed75748a52c26e schema:name doi
    115 schema:value 10.1007/jhep10(2015)035
    116 rdf:type schema:PropertyValue
    117 N8ca030e4eb0d4ada82edfc61756b80df schema:volumeNumber 2015
    118 rdf:type schema:PublicationVolume
    119 Nc38ec4869a48484a8ced1b9ae1430234 rdf:first sg:person.016403722241.33
    120 rdf:rest rdf:nil
    121 Nd1975fcc3c8940b5b1c3ff390579299e schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Mathematical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Mathematical Physics
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Physical Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Quantum Physics
    137 rdf:type schema:DefinedTerm
    138 sg:grant.4322069 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2015)035
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1052482 schema:issn 1029-8479
    141 1126-6708
    142 schema:name Journal of High Energy Physics
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.011224211515.87 schema:affiliation grid-institutes:grid.266100.3
    146 schema:familyName Intriligator
    147 schema:givenName Kenneth
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011224211515.87
    149 rdf:type schema:Person
    150 sg:person.011336674601.46 schema:affiliation grid-institutes:grid.266100.3
    151 schema:familyName Agarwal
    152 schema:givenName Prarit
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46
    154 rdf:type schema:Person
    155 sg:person.016403722241.33 schema:affiliation grid-institutes:grid.266100.3
    156 schema:familyName Song
    157 schema:givenName Jaewon
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33
    159 rdf:type schema:Person
    160 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    161 https://doi.org/10.1007/jhep01(2010)088
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep01(2013)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030213861
    164 https://doi.org/10.1007/jhep01(2013)022
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
    167 https://doi.org/10.1007/jhep01(2014)001
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep01(2014)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863349
    170 https://doi.org/10.1007/jhep01(2014)142
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep01(2015)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043871088
    173 https://doi.org/10.1007/jhep01(2015)044
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    176 https://doi.org/10.1007/jhep02(2013)110
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep02(2015)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019125207
    179 https://doi.org/10.1007/jhep02(2015)089
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    182 https://doi.org/10.1007/jhep03(2010)032
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep03(2013)171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501882
    185 https://doi.org/10.1007/jhep03(2013)171
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep03(2014)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023640
    188 https://doi.org/10.1007/jhep03(2014)133
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep03(2015)049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394950
    191 https://doi.org/10.1007/jhep03(2015)049
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep04(2014)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033007760
    194 https://doi.org/10.1007/jhep04(2014)036
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep04(2014)154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967054
    197 https://doi.org/10.1007/jhep04(2014)154
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep04(2015)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067337
    200 https://doi.org/10.1007/jhep04(2015)173
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep05(2015)075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001737210
    203 https://doi.org/10.1007/jhep05(2015)075
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep06(2010)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836669
    206 https://doi.org/10.1007/jhep06(2010)106
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
    209 https://doi.org/10.1007/jhep06(2012)005
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    212 https://doi.org/10.1007/jhep06(2013)056
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep06(2015)047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156761
    215 https://doi.org/10.1007/jhep06(2015)047
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
    218 https://doi.org/10.1007/jhep07(2013)107
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep07(2014)131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550187
    221 https://doi.org/10.1007/jhep07(2014)131
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep07(2015)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010218429
    224 https://doi.org/10.1007/jhep07(2015)073
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    227 https://doi.org/10.1007/jhep08(2012)034
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep08(2013)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044208279
    230 https://doi.org/10.1007/jhep08(2013)137
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep08(2014)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030354515
    233 https://doi.org/10.1007/jhep08(2014)121
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep09(2015)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003468441
    236 https://doi.org/10.1007/jhep09(2015)007
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep10(2012)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007221034
    239 https://doi.org/10.1007/jhep10(2012)129
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep10(2012)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010897089
    242 https://doi.org/10.1007/jhep10(2012)189
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
    245 https://doi.org/10.1007/jhep10(2013)010
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/jhep10(2013)227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026901583
    248 https://doi.org/10.1007/jhep10(2013)227
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    251 https://doi.org/10.1007/jhep11(2010)099
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    254 https://doi.org/10.1007/s00220-007-0258-7
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    257 https://doi.org/10.1007/s00220-012-1607-8
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
    260 https://doi.org/10.1088/1126-6708/2009/07/067
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
    263 https://doi.org/10.1088/1126-6708/2009/09/086
    264 rdf:type schema:CreativeWork
    265 grid-institutes:grid.266100.3 schema:alternateName Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    266 schema:name Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...