The moduli space of vacua of N=2 class S theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10

AUTHORS

Dan Xie, Kazuya Yonekura

ABSTRACT

We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examples including N=2 SQCD, TN theory and Argyres-Douglas theories. More... »

PAGES

134

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep10(2014)134

DOI

http://dx.doi.org/10.1007/jhep10(2014)134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028849658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Dan", 
        "id": "sg:person.014441531117.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yonekura", 
        "givenName": "Kazuya", 
        "id": "sg:person.07506765427.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep08(2012)034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000072911", 
          "https://doi.org/10.1007/jhep08(2012)034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2012)031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001081567", 
          "https://doi.org/10.1007/jhep02(2012)031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003449052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003449052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005011480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00281-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007736812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00671-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009447958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00531-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009580022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2012)189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010897089", 
          "https://doi.org/10.1007/jhep10(2012)189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013246104", 
          "https://doi.org/10.1007/jhep11(2010)099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013246104", 
          "https://doi.org/10.1007/jhep11(2010)099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(96)00210-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014061405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2012)054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021221673", 
          "https://doi.org/10.1007/jhep10(2012)054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00588-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021864388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(96)00583-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022671051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90154-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90154-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00559-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026233284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2013)227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026901583", 
          "https://doi.org/10.1007/jhep10(2013)227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2013)010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026965803", 
          "https://doi.org/10.1007/jhep10(2013)010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027602010", 
          "https://doi.org/10.1007/jhep01(2014)001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2013)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285701", 
          "https://doi.org/10.1007/jhep01(2013)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2011)011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037470008", 
          "https://doi.org/10.1007/jhep02(2011)011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038207339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2014)154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038967054", 
          "https://doi.org/10.1007/jhep04(2014)154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040546683", 
          "https://doi.org/10.1007/jhep02(2013)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ptep/pts047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045219823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-55.1.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048378410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2011)083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050303342", 
          "https://doi.org/10.1007/jhep01(2011)083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051863349", 
          "https://doi.org/10.1007/jhep01(2014)142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00416-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053448346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x01003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062921757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x1340006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062927113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-87-05408-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1997.v1.n1.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin\u2019s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examples including N=2 SQCD, TN theory and Argyres-Douglas theories.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep10(2014)134", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2014"
      }
    ], 
    "name": "The moduli space of vacua of N=2 class S theories", 
    "pagination": "134", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "896e9d862e4f7c984df39db8546a92837268cffc64d8b7088dc12ccb3f15b015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep10(2014)134"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028849658"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep10(2014)134", 
      "https://app.dimensions.ai/details/publication/pub.1028849658"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88222_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP10%282014%29134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2014)134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2014)134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2014)134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2014)134'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep10(2014)134 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3cbb4cfdb48c444ba334b7c1bc119826
4 schema:citation sg:pub.10.1007/jhep01(2011)083
5 sg:pub.10.1007/jhep01(2013)100
6 sg:pub.10.1007/jhep01(2014)001
7 sg:pub.10.1007/jhep01(2014)142
8 sg:pub.10.1007/jhep02(2011)011
9 sg:pub.10.1007/jhep02(2012)031
10 sg:pub.10.1007/jhep02(2013)110
11 sg:pub.10.1007/jhep04(2014)154
12 sg:pub.10.1007/jhep08(2012)034
13 sg:pub.10.1007/jhep10(2012)054
14 sg:pub.10.1007/jhep10(2012)189
15 sg:pub.10.1007/jhep10(2013)010
16 sg:pub.10.1007/jhep10(2013)227
17 sg:pub.10.1007/jhep11(2010)099
18 sg:pub.10.1007/s00220-009-0938-6
19 sg:pub.10.1088/1126-6708/2009/07/067
20 sg:pub.10.1088/1126-6708/2009/09/052
21 https://doi.org/10.1016/0550-3213(85)90154-3
22 https://doi.org/10.1016/0550-3213(94)90124-4
23 https://doi.org/10.1016/0550-3213(94)90214-3
24 https://doi.org/10.1016/0550-3213(95)00281-v
25 https://doi.org/10.1016/0550-3213(95)00588-9
26 https://doi.org/10.1016/0550-3213(95)00609-5
27 https://doi.org/10.1016/0550-3213(95)00671-0
28 https://doi.org/10.1016/0550-3213(96)00210-6
29 https://doi.org/10.1016/s0550-3213(96)00583-4
30 https://doi.org/10.1016/s0550-3213(97)00416-1
31 https://doi.org/10.1016/s0550-3213(97)00531-2
32 https://doi.org/10.1016/s0550-3213(97)00559-2
33 https://doi.org/10.1016/s0550-3213(98)00015-7
34 https://doi.org/10.1093/ptep/pts047
35 https://doi.org/10.1112/plms/s3-55.1.59
36 https://doi.org/10.1142/s0217751x01003937
37 https://doi.org/10.1142/s0217751x1340006x
38 https://doi.org/10.1215/s0012-7094-87-05408-1
39 https://doi.org/10.4310/atmp.1997.v1.n1.a1
40 https://doi.org/10.4310/atmp.2009.v13.n3.a5
41 schema:datePublished 2014-10
42 schema:datePublishedReg 2014-10-01
43 schema:description We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examples including N=2 SQCD, TN theory and Argyres-Douglas theories.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N7a46faa5b00e40cda9fab1b5376c8ff1
48 Naff74fe97beb487e94d89637116c10ba
49 sg:journal.1052482
50 schema:name The moduli space of vacua of N=2 class S theories
51 schema:pagination 134
52 schema:productId N36e7c04e7816448dafc17b42906998c8
53 N8e6408f0b28d485a9c14daeb7e83999e
54 Nf24c8b5629cf4fd6bd1d5acb85a92458
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849658
56 https://doi.org/10.1007/jhep10(2014)134
57 schema:sdDatePublished 2019-04-11T13:07
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N19f98e9ccb6d481f9b163d53a45cabb8
60 schema:url https://link.springer.com/10.1007%2FJHEP10%282014%29134
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N19f98e9ccb6d481f9b163d53a45cabb8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N36e7c04e7816448dafc17b42906998c8 schema:name dimensions_id
67 schema:value pub.1028849658
68 rdf:type schema:PropertyValue
69 N3cbb4cfdb48c444ba334b7c1bc119826 rdf:first sg:person.014441531117.02
70 rdf:rest Nb192e98b3594446aa4de26b29e034b5a
71 N7a46faa5b00e40cda9fab1b5376c8ff1 schema:volumeNumber 2014
72 rdf:type schema:PublicationVolume
73 N8e6408f0b28d485a9c14daeb7e83999e schema:name doi
74 schema:value 10.1007/jhep10(2014)134
75 rdf:type schema:PropertyValue
76 Na83fa69935184f2d90b15c457074c361 schema:name School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, United Kingdom
77 rdf:type schema:Organization
78 Naff74fe97beb487e94d89637116c10ba schema:issueNumber 10
79 rdf:type schema:PublicationIssue
80 Nb192e98b3594446aa4de26b29e034b5a rdf:first sg:person.07506765427.69
81 rdf:rest rdf:nil
82 Nd0d60e7422ee491a89afd060f4680e38 schema:name School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, United Kingdom
83 rdf:type schema:Organization
84 Nf24c8b5629cf4fd6bd1d5acb85a92458 schema:name readcube_id
85 schema:value 896e9d862e4f7c984df39db8546a92837268cffc64d8b7088dc12ccb3f15b015
86 rdf:type schema:PropertyValue
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1052482 schema:issn 1029-8479
94 1126-6708
95 schema:name Journal of High Energy Physics
96 rdf:type schema:Periodical
97 sg:person.014441531117.02 schema:affiliation Nd0d60e7422ee491a89afd060f4680e38
98 schema:familyName Xie
99 schema:givenName Dan
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
101 rdf:type schema:Person
102 sg:person.07506765427.69 schema:affiliation Na83fa69935184f2d90b15c457074c361
103 schema:familyName Yonekura
104 schema:givenName Kazuya
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69
106 rdf:type schema:Person
107 sg:pub.10.1007/jhep01(2011)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050303342
108 https://doi.org/10.1007/jhep01(2011)083
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
111 https://doi.org/10.1007/jhep01(2013)100
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
114 https://doi.org/10.1007/jhep01(2014)001
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/jhep01(2014)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863349
117 https://doi.org/10.1007/jhep01(2014)142
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/jhep02(2011)011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037470008
120 https://doi.org/10.1007/jhep02(2011)011
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/jhep02(2012)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081567
123 https://doi.org/10.1007/jhep02(2012)031
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
126 https://doi.org/10.1007/jhep02(2013)110
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/jhep04(2014)154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967054
129 https://doi.org/10.1007/jhep04(2014)154
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
132 https://doi.org/10.1007/jhep08(2012)034
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/jhep10(2012)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021221673
135 https://doi.org/10.1007/jhep10(2012)054
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/jhep10(2012)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010897089
138 https://doi.org/10.1007/jhep10(2012)189
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
141 https://doi.org/10.1007/jhep10(2013)010
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/jhep10(2013)227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026901583
144 https://doi.org/10.1007/jhep10(2013)227
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
147 https://doi.org/10.1007/jhep11(2010)099
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
150 https://doi.org/10.1007/s00220-009-0938-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
153 https://doi.org/10.1088/1126-6708/2009/07/067
154 rdf:type schema:CreativeWork
155 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
156 https://doi.org/10.1088/1126-6708/2009/09/052
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0550-3213(85)90154-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561623
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0550-3213(94)90124-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241838
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0550-3213(94)90214-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003449052
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/0550-3213(95)00281-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1007736812
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0550-3213(95)00588-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021864388
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0550-3213(95)00609-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038207339
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0550-3213(95)00671-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009447958
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0550-3213(96)00210-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014061405
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0550-3213(96)00583-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022671051
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0550-3213(97)00416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053448346
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0550-3213(97)00531-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009580022
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0550-3213(97)00559-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026233284
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0550-3213(98)00015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005011480
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/ptep/pts047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219823
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1112/plms/s3-55.1.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378410
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1142/s0217751x01003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062921757
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1142/s0217751x1340006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062927113
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1215/s0012-7094-87-05408-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419356
193 rdf:type schema:CreativeWork
194 https://doi.org/10.4310/atmp.1997.v1.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456868
195 rdf:type schema:CreativeWork
196 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
197 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...