Localization on three-manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

Luis F. Alday, Dario Martelli, Paul Richmond, James Sparks

ABSTRACT

We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with a contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group. More... »

PAGES

95

References to SciGraph publications

  • 2013-05. Supersymmetric field theories on three-manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10. Contact terms, unitarity, and F -maximization in three-dimensional superconformal theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03. Exact results for Wilson loops in superconformal Chern-Simons theories with matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08. Supersymmetry on curved spaces and holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-10. The large N limit of M2-branes on Lens spaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03. Notes on SUSY gauge theories on three-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-04. Factorisation of theories on the squashed 3-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05. SUSY gauge theories on squashed three-spheres in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-09. Comments on Chern-Simons contact terms in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06. Rigid supersymmetric theories in curved superspace in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-06. Sasaki–Einstein Manifolds and Volume Minimisation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-05. The exact superconformal R-symmetry extremizes Z in JOURNAL OF HIGH ENERGY PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    10

    VOLUME

    2013

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2013)095

    DOI

    http://dx.doi.org/10.1007/jhep10(2013)095

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041612163


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Mathematical Institute, University of Oxford, 24-29 St Giles\u2019, OX1 3LB, Oxford, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alday", 
            "givenName": "Luis F.", 
            "id": "sg:person.012721511661.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721511661.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King's College London", 
              "id": "https://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Mathematics, King\u2019s College London, The Strand, WC2R 2LS, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martelli", 
            "givenName": "Dario", 
            "id": "sg:person.010105233122.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Mathematical Institute, University of Oxford, 24-29 St Giles\u2019, OX1 3LB, Oxford, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Richmond", 
            "givenName": "Paul", 
            "id": "sg:person.0714125642.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714125642.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Mathematical Institute, University of Oxford, 24-29 St Giles\u2019, OX1 3LB, Oxford, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sparks", 
            "givenName": "James", 
            "id": "sg:person.013626732335.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep05(2011)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003742519", 
              "https://doi.org/10.1007/jhep05(2011)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2012)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005055998", 
              "https://doi.org/10.1007/jhep04(2012)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008976617", 
              "https://doi.org/10.1007/jhep05(2013)017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0479-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009921498", 
              "https://doi.org/10.1007/s00220-008-0479-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0479-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009921498", 
              "https://doi.org/10.1007/s00220-008-0479-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010940528", 
              "https://doi.org/10.1007/jhep03(2011)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017854591", 
              "https://doi.org/10.1007/jhep08(2012)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017872625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2012)091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019300516", 
              "https://doi.org/10.1007/jhep09(2012)091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023124234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.08.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025381824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027455985", 
              "https://doi.org/10.1007/jhep06(2011)114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1485-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100231", 
              "https://doi.org/10.1007/s00220-012-1485-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035305733", 
              "https://doi.org/10.1007/jhep10(2012)053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040281622", 
              "https://doi.org/10.1007/jhep05(2012)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046905077", 
              "https://doi.org/10.1007/jhep10(2012)057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052358077", 
              "https://doi.org/10.1007/jhep03(2010)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052358077", 
              "https://doi.org/10.1007/jhep03(2010)089"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10", 
        "datePublishedReg": "2013-10-01", 
        "description": "We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with a contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep10(2013)095", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2776417", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2751607", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "name": "Localization on three-manifolds", 
        "pagination": "95", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c639c2fc894cf989199a72a999db781c5ebb758158852cad5d42c1b5fedf50d1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2013)095"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041612163"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2013)095", 
          "https://app.dimensions.ai/details/publication/pub.1041612163"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP10(2013)095"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)095'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)095'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)095'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)095'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2013)095 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b446a54de114b58ad7da66c48d2a372
    4 schema:citation sg:pub.10.1007/jhep03(2010)089
    5 sg:pub.10.1007/jhep03(2011)127
    6 sg:pub.10.1007/jhep04(2012)120
    7 sg:pub.10.1007/jhep05(2011)014
    8 sg:pub.10.1007/jhep05(2012)159
    9 sg:pub.10.1007/jhep05(2013)017
    10 sg:pub.10.1007/jhep06(2011)114
    11 sg:pub.10.1007/jhep08(2012)061
    12 sg:pub.10.1007/jhep09(2012)091
    13 sg:pub.10.1007/jhep10(2012)053
    14 sg:pub.10.1007/jhep10(2012)057
    15 sg:pub.10.1007/s00220-008-0479-4
    16 sg:pub.10.1007/s00220-012-1485-0
    17 https://doi.org/10.1016/j.nuclphysb.2012.03.012
    18 https://doi.org/10.1016/j.nuclphysb.2012.07.019
    19 https://doi.org/10.1016/j.nuclphysb.2012.08.015
    20 schema:datePublished 2013-10
    21 schema:datePublishedReg 2013-10-01
    22 schema:description We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with a contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N49bb7cc7385b47778028a2d424293399
    27 Nfffbaa3c601e413bbc111fedc8026d5a
    28 sg:journal.1052482
    29 schema:name Localization on three-manifolds
    30 schema:pagination 95
    31 schema:productId N395971bfc1ba4cf08e8afa18e5baccc6
    32 N8c3ecc82e1c74742ad3fd56137455acf
    33 Nd5eeea979cf343a1ae610d4e6f9cac22
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041612163
    35 https://doi.org/10.1007/jhep10(2013)095
    36 schema:sdDatePublished 2019-04-10T14:04
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Ndf2705fba7b042078bd7eb55fbd8d150
    39 schema:url http://link.springer.com/10.1007/JHEP10(2013)095
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N11c3b604bd6340a7ad286cd7a35eb9f6 rdf:first sg:person.0714125642.55
    44 rdf:rest N9c0915b84ea346378ce23bfc091c8b42
    45 N395971bfc1ba4cf08e8afa18e5baccc6 schema:name doi
    46 schema:value 10.1007/jhep10(2013)095
    47 rdf:type schema:PropertyValue
    48 N3b446a54de114b58ad7da66c48d2a372 rdf:first sg:person.012721511661.95
    49 rdf:rest N7bfa697fa9c44f38839b087bc5ae10b1
    50 N49bb7cc7385b47778028a2d424293399 schema:issueNumber 10
    51 rdf:type schema:PublicationIssue
    52 N7bfa697fa9c44f38839b087bc5ae10b1 rdf:first sg:person.010105233122.34
    53 rdf:rest N11c3b604bd6340a7ad286cd7a35eb9f6
    54 N8c3ecc82e1c74742ad3fd56137455acf schema:name readcube_id
    55 schema:value c639c2fc894cf989199a72a999db781c5ebb758158852cad5d42c1b5fedf50d1
    56 rdf:type schema:PropertyValue
    57 N9c0915b84ea346378ce23bfc091c8b42 rdf:first sg:person.013626732335.12
    58 rdf:rest rdf:nil
    59 Nd5eeea979cf343a1ae610d4e6f9cac22 schema:name dimensions_id
    60 schema:value pub.1041612163
    61 rdf:type schema:PropertyValue
    62 Ndf2705fba7b042078bd7eb55fbd8d150 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nfffbaa3c601e413bbc111fedc8026d5a schema:volumeNumber 2013
    65 rdf:type schema:PublicationVolume
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:grant.2751607 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2013)095
    73 rdf:type schema:MonetaryGrant
    74 sg:grant.2776417 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2013)095
    75 rdf:type schema:MonetaryGrant
    76 sg:journal.1052482 schema:issn 1029-8479
    77 1126-6708
    78 schema:name Journal of High Energy Physics
    79 rdf:type schema:Periodical
    80 sg:person.010105233122.34 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
    81 schema:familyName Martelli
    82 schema:givenName Dario
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34
    84 rdf:type schema:Person
    85 sg:person.012721511661.95 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    86 schema:familyName Alday
    87 schema:givenName Luis F.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721511661.95
    89 rdf:type schema:Person
    90 sg:person.013626732335.12 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    91 schema:familyName Sparks
    92 schema:givenName James
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12
    94 rdf:type schema:Person
    95 sg:person.0714125642.55 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    96 schema:familyName Richmond
    97 schema:givenName Paul
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714125642.55
    99 rdf:type schema:Person
    100 sg:pub.10.1007/jhep03(2010)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358077
    101 https://doi.org/10.1007/jhep03(2010)089
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/jhep03(2011)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010940528
    104 https://doi.org/10.1007/jhep03(2011)127
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/jhep04(2012)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005055998
    107 https://doi.org/10.1007/jhep04(2012)120
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/jhep05(2011)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742519
    110 https://doi.org/10.1007/jhep05(2011)014
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/jhep05(2012)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040281622
    113 https://doi.org/10.1007/jhep05(2012)159
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/jhep05(2013)017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008976617
    116 https://doi.org/10.1007/jhep05(2013)017
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/jhep06(2011)114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455985
    119 https://doi.org/10.1007/jhep06(2011)114
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/jhep08(2012)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017854591
    122 https://doi.org/10.1007/jhep08(2012)061
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/jhep09(2012)091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300516
    125 https://doi.org/10.1007/jhep09(2012)091
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep10(2012)053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035305733
    128 https://doi.org/10.1007/jhep10(2012)053
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep10(2012)057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046905077
    131 https://doi.org/10.1007/jhep10(2012)057
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00220-008-0479-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009921498
    134 https://doi.org/10.1007/s00220-008-0479-4
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00220-012-1485-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100231
    137 https://doi.org/10.1007/s00220-012-1485-0
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.nuclphysb.2012.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017872625
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.nuclphysb.2012.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023124234
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.nuclphysb.2012.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025381824
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
    146 schema:name Department of Mathematics, King’s College London, The Strand, WC2R 2LS, London, U.K.
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    149 schema:name Mathematical Institute, University of Oxford, 24-29 St Giles’, OX1 3LB, Oxford, U.K.
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...