Phases, flops and F-theory: SU(5) gauge theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10-08

AUTHORS

Hirotaka Hayashi, Craig Lawrie, Sakura Schäfer-Nameki

ABSTRACT

We consider F-theory and M-theory compactifications on singular Calabi-Yau fourfolds with an SU(5) singularity. On the M-theory side this realizes three-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =2supersymmetricgaugetheorieswithmatter,andcompactificationonaresolutionof the fourfold corresponds to passing to the Coulomb branch of the gauge theory. The classical phase structure of these theories has a simple characterization in terms of subwedges of the fundamental Weyl chamber of the gauge group. This phase structure has a counterpart in the network of small resolutions of the Calabi-Yau fourfold. We determine the geometric realization of each phase, which crucially depends on the fiber structure in codimension 2 and 3, including the network structure, which is realized in terms of flop transitions. This results in a set of small resolutions, which do not have a standard algebraic or toric realization, but are obtained by flops along codimension 2 (matter) loci. More... »

PAGES

46

References to SciGraph publications

  • 2013-07-05. On singular fibres in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11-21. Yukawas, G-flux, and spectral covers from resolved Calabi-Yau’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04-10. The Tate form on steroids: resolution and higher codimension fibers in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-08-27. M-theory, orientifolds and G-flux in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-22. Tate’s algorithm and F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-09. F-theory fluxes, chirality and Chern-Simons theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2013)046

    DOI

    http://dx.doi.org/10.1007/jhep10(2013)046

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050856190


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, King\u2019s College London, The Strand, WC2R 2LS, London, England", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Mathematics, King\u2019s College London, The Strand, WC2R 2LS, London, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lawrie", 
            "givenName": "Craig", 
            "id": "sg:person.011125030216.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125030216.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, King\u2019s College London, The Strand, WC2R 2LS, London, England", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Mathematics, King\u2019s College London, The Strand, WC2R 2LS, London, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4fer-Nameki", 
            "givenName": "Sakura", 
            "id": "sg:person.015352352421.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352352421.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2011)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039895775", 
              "https://doi.org/10.1007/jhep11(2011)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003639562", 
              "https://doi.org/10.1007/jhep03(2012)027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/08/023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050674685", 
              "https://doi.org/10.1088/1126-6708/1999/08/023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044890911", 
              "https://doi.org/10.1007/jhep08(2011)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027233011", 
              "https://doi.org/10.1007/jhep04(2013)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002060948", 
              "https://doi.org/10.1007/jhep07(2013)031"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-08", 
        "datePublishedReg": "2013-10-08", 
        "description": "We consider F-theory and M-theory compactifications on singular Calabi-Yau fourfolds with an SU(5) singularity. On the M-theory side this realizes three-dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} =2supersymmetricgaugetheorieswithmatter,andcompactificationonaresolutionof the fourfold corresponds to passing to the Coulomb branch of the gauge theory. The classical phase structure of these theories has a simple characterization in terms of subwedges of the fundamental Weyl chamber of the gauge group. This phase structure has a counterpart in the network of small resolutions of the Calabi-Yau fourfold. We determine the geometric realization of each phase, which crucially depends on the fiber structure in codimension 2 and 3, including the network structure, which is realized in terms of flop transitions. This results in a set of small resolutions, which do not have a standard algebraic or toric realization, but are obtained by flops along codimension 2 (matter) loci.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep10(2013)046", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3495214", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2754566", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2751607", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "Calabi-Yau fourfolds", 
          "singular Calabi-Yau fourfolds", 
          "gauge theory", 
          "fundamental Weyl chamber", 
          "theory compactifications", 
          "geometric realization", 
          "theory side", 
          "Coulomb branch", 
          "codimension 2", 
          "Weyl chamber", 
          "gauge group", 
          "small resolution", 
          "simple characterization", 
          "theory", 
          "flop transition", 
          "network structure", 
          "compactification", 
          "singularity", 
          "realization", 
          "flop", 
          "terms", 
          "set", 
          "network", 
          "structure", 
          "branches", 
          "fourfold", 
          "corresponds", 
          "phase structure", 
          "counterparts", 
          "resolution", 
          "transition", 
          "side", 
          "phase", 
          "characterization", 
          "fiber structure", 
          "group", 
          "loci", 
          "chamber", 
          "andcompactificationonaresolutionof", 
          "fourfold corresponds", 
          "classical phase structure", 
          "terms of subwedges", 
          "subwedges", 
          "toric realization", 
          "codimension 2 (matter) loci"
        ], 
        "name": "Phases, flops and F-theory: SU(5) gauge theories", 
        "pagination": "46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050856190"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2013)046"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2013)046", 
          "https://app.dimensions.ai/details/publication/pub.1050856190"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_605.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep10(2013)046"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)046'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)046'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)046'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2013)046'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      22 PREDICATES      76 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2013)046 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne9c2ddce85e8483d842cf144bee7d0e6
    4 schema:citation sg:pub.10.1007/jhep03(2012)027
    5 sg:pub.10.1007/jhep04(2013)061
    6 sg:pub.10.1007/jhep07(2013)031
    7 sg:pub.10.1007/jhep08(2011)094
    8 sg:pub.10.1007/jhep11(2011)098
    9 sg:pub.10.1088/1126-6708/1999/08/023
    10 schema:datePublished 2013-10-08
    11 schema:datePublishedReg 2013-10-08
    12 schema:description We consider F-theory and M-theory compactifications on singular Calabi-Yau fourfolds with an SU(5) singularity. On the M-theory side this realizes three-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =2supersymmetricgaugetheorieswithmatter,andcompactificationonaresolutionof the fourfold corresponds to passing to the Coulomb branch of the gauge theory. The classical phase structure of these theories has a simple characterization in terms of subwedges of the fundamental Weyl chamber of the gauge group. This phase structure has a counterpart in the network of small resolutions of the Calabi-Yau fourfold. We determine the geometric realization of each phase, which crucially depends on the fiber structure in codimension 2 and 3, including the network structure, which is realized in terms of flop transitions. This results in a set of small resolutions, which do not have a standard algebraic or toric realization, but are obtained by flops along codimension 2 (matter) loci.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N8761f79ae6a3463290327ee85c0e3e63
    17 Nd3febb56fc3f4616bec86261fe2824df
    18 sg:journal.1052482
    19 schema:keywords Calabi-Yau fourfolds
    20 Coulomb branch
    21 Weyl chamber
    22 andcompactificationonaresolutionof
    23 branches
    24 chamber
    25 characterization
    26 classical phase structure
    27 codimension 2
    28 codimension 2 (matter) loci
    29 compactification
    30 corresponds
    31 counterparts
    32 fiber structure
    33 flop
    34 flop transition
    35 fourfold
    36 fourfold corresponds
    37 fundamental Weyl chamber
    38 gauge group
    39 gauge theory
    40 geometric realization
    41 group
    42 loci
    43 network
    44 network structure
    45 phase
    46 phase structure
    47 realization
    48 resolution
    49 set
    50 side
    51 simple characterization
    52 singular Calabi-Yau fourfolds
    53 singularity
    54 small resolution
    55 structure
    56 subwedges
    57 terms
    58 terms of subwedges
    59 theory
    60 theory compactifications
    61 theory side
    62 toric realization
    63 transition
    64 schema:name Phases, flops and F-theory: SU(5) gauge theories
    65 schema:pagination 46
    66 schema:productId N9416c4af6aa34f0db2d9c5b322602c53
    67 Nbe460f1086b94d4bab09dfa6782e02b3
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050856190
    69 https://doi.org/10.1007/jhep10(2013)046
    70 schema:sdDatePublished 2022-01-01T18:30
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N288ab5bd57f04ec0a809ed7124216051
    73 schema:url https://doi.org/10.1007/jhep10(2013)046
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N0dd718b55aa248a3b4ad161967686df9 rdf:first sg:person.015352352421.76
    78 rdf:rest rdf:nil
    79 N288ab5bd57f04ec0a809ed7124216051 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N8761f79ae6a3463290327ee85c0e3e63 schema:volumeNumber 2013
    82 rdf:type schema:PublicationVolume
    83 N9416c4af6aa34f0db2d9c5b322602c53 schema:name dimensions_id
    84 schema:value pub.1050856190
    85 rdf:type schema:PropertyValue
    86 Nace15f2f2dda46fcb6b4920d0f1377f0 rdf:first sg:person.011125030216.92
    87 rdf:rest N0dd718b55aa248a3b4ad161967686df9
    88 Nbe460f1086b94d4bab09dfa6782e02b3 schema:name doi
    89 schema:value 10.1007/jhep10(2013)046
    90 rdf:type schema:PropertyValue
    91 Nd3febb56fc3f4616bec86261fe2824df schema:issueNumber 10
    92 rdf:type schema:PublicationIssue
    93 Ne9c2ddce85e8483d842cf144bee7d0e6 rdf:first sg:person.012413203443.40
    94 rdf:rest Nace15f2f2dda46fcb6b4920d0f1377f0
    95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Pure Mathematics
    100 rdf:type schema:DefinedTerm
    101 sg:grant.2751607 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2013)046
    102 rdf:type schema:MonetaryGrant
    103 sg:grant.2754566 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2013)046
    104 rdf:type schema:MonetaryGrant
    105 sg:grant.3495214 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep10(2013)046
    106 rdf:type schema:MonetaryGrant
    107 sg:journal.1052482 schema:issn 1029-8479
    108 1126-6708
    109 schema:name Journal of High Energy Physics
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.011125030216.92 schema:affiliation grid-institutes:grid.13097.3c
    113 schema:familyName Lawrie
    114 schema:givenName Craig
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125030216.92
    116 rdf:type schema:Person
    117 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.249961.1
    118 schema:familyName Hayashi
    119 schema:givenName Hirotaka
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    121 rdf:type schema:Person
    122 sg:person.015352352421.76 schema:affiliation grid-institutes:grid.13097.3c
    123 schema:familyName Schäfer-Nameki
    124 schema:givenName Sakura
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352352421.76
    126 rdf:type schema:Person
    127 sg:pub.10.1007/jhep03(2012)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639562
    128 https://doi.org/10.1007/jhep03(2012)027
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep04(2013)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027233011
    131 https://doi.org/10.1007/jhep04(2013)061
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep07(2013)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002060948
    134 https://doi.org/10.1007/jhep07(2013)031
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep08(2011)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044890911
    137 https://doi.org/10.1007/jhep08(2011)094
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep11(2011)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895775
    140 https://doi.org/10.1007/jhep11(2011)098
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/1999/08/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050674685
    143 https://doi.org/10.1088/1126-6708/1999/08/023
    144 rdf:type schema:CreativeWork
    145 grid-institutes:grid.13097.3c schema:alternateName Department of Mathematics, King’s College London, The Strand, WC2R 2LS, London, England
    146 schema:name Department of Mathematics, King’s College London, The Strand, WC2R 2LS, London, England
    147 rdf:type schema:Organization
    148 grid-institutes:grid.249961.1 schema:alternateName School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, Korea
    149 schema:name School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, Korea
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...