Fast scramblers of small size View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

José L. F. Barbón, Javier M. Magán

ABSTRACT

We investigate various geometrical aspects of the notion of ‘optical depth’ in the thermal atmosphere of black hole horizons. Optical depth has been proposed as a measure of fast-crambling times in such black hole systems, and the associated optical metric suggests that classical chaos plays a leading role in the actual scrambling mechanism. We study the behavior of theoptical depth with the size of the system and find that AdS/CFT phase transitions with topology change occur naturally as the scrambler becomes smaller than its thermal length. In the context of detailed AdS/CFT models basedon D-branes, T-duality implies that small scramblers are described in terms of matrix quantum mechanics. More... »

PAGES

35

References to SciGraph publications

  • 1999-12-15. On 1/N corrections to the entropy of noncommutative Yang-Mills theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-09-12. Deconstructing the little Hagedorn holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-09-26. Black holes as mirrors: quantum information in random subsystems in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-15. Fast scramblers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-07. The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02. Matrix models for the black hole information paradox in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-07. A matrix model for black hole thermalization in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep10(2011)035

    DOI

    http://dx.doi.org/10.1007/jhep10(2011)035

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027143473


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Autonomous University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.5515.4", 
              "name": [
                "Instituto de F\u00edsica Te\u00f3rica IFT UAM/CSIC, Campus de Cantoblanco, 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barb\u00f3n", 
            "givenName": "Jos\u00e9 L. F.", 
            "id": "sg:person.011034373745.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034373745.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Mag\u00e1n", 
            "givenName": "Javier M.", 
            "id": "sg:person.016175534161.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175534161.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevd.58.046004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000234924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.58.046004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000234924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.64.124023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003217726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.64.124023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003217726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/12/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003350013", 
              "https://doi.org/10.1088/1126-6708/1999/12/017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/09/055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006455927", 
              "https://doi.org/10.1088/1126-6708/2007/09/055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006993902", 
              "https://doi.org/10.1007/jhep02(2010)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006993902", 
              "https://doi.org/10.1007/jhep02(2010)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00824-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008729033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1978.0022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009236192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00868-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010461789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013450009", 
              "https://doi.org/10.1088/1126-6708/2008/10/065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017704824", 
              "https://doi.org/10.1088/1126-6708/2008/10/028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019186743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019186743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(80)90138-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023035279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/09/120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023220297", 
              "https://doi.org/10.1088/1126-6708/2007/09/120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.5112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043426195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.5112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043426195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.2712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044632038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.2712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044632038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046634012", 
              "https://doi.org/10.1088/1126-6708/2007/12/027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)90206-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047556269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)90206-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047556269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048387653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048387653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.18.3598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.18.3598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686225"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-10", 
        "datePublishedReg": "2011-10-01", 
        "description": "We investigate various geometrical aspects of the notion of \u2018optical depth\u2019 in the thermal atmosphere of black hole horizons. Optical depth has been proposed as a measure of fast-crambling times in such black hole systems, and the associated optical metric suggests that classical chaos plays a leading role in the actual scrambling mechanism. We study the behavior of theoptical depth with the size of the system and find that AdS/CFT phase transitions with topology change occur naturally as the scrambler becomes smaller than its thermal length. In the context of detailed AdS/CFT models basedon D-branes, T-duality implies that small scramblers are described in terms of matrix quantum mechanics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep10(2011)035", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2011"
          }
        ], 
        "name": "Fast scramblers of small size", 
        "pagination": "35", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "814d055107c332caaa07e97df6783c9ccc8becd2f5bd9642d35ccd2518a389be"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep10(2011)035"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027143473"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep10(2011)035", 
          "https://app.dimensions.ai/details/publication/pub.1027143473"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FJHEP10%282011%29035"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2011)035'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2011)035'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2011)035'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep10(2011)035'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep10(2011)035 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Ndacf7425b6774471b984246f3e3b8dce
    4 schema:citation sg:pub.10.1007/jhep02(2010)073
    5 sg:pub.10.1088/1126-6708/1999/12/017
    6 sg:pub.10.1088/1126-6708/2007/09/055
    7 sg:pub.10.1088/1126-6708/2007/09/120
    8 sg:pub.10.1088/1126-6708/2007/12/027
    9 sg:pub.10.1088/1126-6708/2008/10/028
    10 sg:pub.10.1088/1126-6708/2008/10/065
    11 https://doi.org/10.1016/0003-4916(80)90138-4
    12 https://doi.org/10.1016/0550-3213(94)90206-2
    13 https://doi.org/10.1016/s0550-3213(98)00824-4
    14 https://doi.org/10.1016/s0550-3213(98)00868-2
    15 https://doi.org/10.1098/rspa.1978.0022
    16 https://doi.org/10.1103/physrevd.18.3598
    17 https://doi.org/10.1103/physrevd.50.2712
    18 https://doi.org/10.1103/physrevd.55.5112
    19 https://doi.org/10.1103/physrevd.58.046004
    20 https://doi.org/10.1103/physrevd.64.124023
    21 https://doi.org/10.1103/physrevd.79.064031
    22 https://doi.org/10.1103/physrevlett.70.2837
    23 schema:datePublished 2011-10
    24 schema:datePublishedReg 2011-10-01
    25 schema:description We investigate various geometrical aspects of the notion of ‘optical depth’ in the thermal atmosphere of black hole horizons. Optical depth has been proposed as a measure of fast-crambling times in such black hole systems, and the associated optical metric suggests that classical chaos plays a leading role in the actual scrambling mechanism. We study the behavior of theoptical depth with the size of the system and find that AdS/CFT phase transitions with topology change occur naturally as the scrambler becomes smaller than its thermal length. In the context of detailed AdS/CFT models basedon D-branes, T-duality implies that small scramblers are described in terms of matrix quantum mechanics.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N0c276827f0f94fa4b1df960aec04d02f
    30 N449820807b57476bb3f370d0ab27354a
    31 sg:journal.1052482
    32 schema:name Fast scramblers of small size
    33 schema:pagination 35
    34 schema:productId N0200cf8acf79431098a6c1825918eadc
    35 N49895c306aa24dce815021f18044776b
    36 N9024870781bd42ce966bb8325bb5ec21
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027143473
    38 https://doi.org/10.1007/jhep10(2011)035
    39 schema:sdDatePublished 2019-04-10T14:10
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N699900ef7a1b4fc28f6bf238e59bbb71
    42 schema:url http://link.springer.com/10.1007%2FJHEP10%282011%29035
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0200cf8acf79431098a6c1825918eadc schema:name doi
    47 schema:value 10.1007/jhep10(2011)035
    48 rdf:type schema:PropertyValue
    49 N0c276827f0f94fa4b1df960aec04d02f schema:volumeNumber 2011
    50 rdf:type schema:PublicationVolume
    51 N449820807b57476bb3f370d0ab27354a schema:issueNumber 10
    52 rdf:type schema:PublicationIssue
    53 N49895c306aa24dce815021f18044776b schema:name dimensions_id
    54 schema:value pub.1027143473
    55 rdf:type schema:PropertyValue
    56 N699900ef7a1b4fc28f6bf238e59bbb71 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N6e8bc3a90fa54ef1a3ed2b38f2bcb67f rdf:first sg:person.016175534161.16
    59 rdf:rest rdf:nil
    60 N9024870781bd42ce966bb8325bb5ec21 schema:name readcube_id
    61 schema:value 814d055107c332caaa07e97df6783c9ccc8becd2f5bd9642d35ccd2518a389be
    62 rdf:type schema:PropertyValue
    63 Ndacf7425b6774471b984246f3e3b8dce rdf:first sg:person.011034373745.35
    64 rdf:rest N6e8bc3a90fa54ef1a3ed2b38f2bcb67f
    65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Other Physical Sciences
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1052482 schema:issn 1029-8479
    72 1126-6708
    73 schema:name Journal of High Energy Physics
    74 rdf:type schema:Periodical
    75 sg:person.011034373745.35 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
    76 schema:familyName Barbón
    77 schema:givenName José L. F.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034373745.35
    79 rdf:type schema:Person
    80 sg:person.016175534161.16 schema:familyName Magán
    81 schema:givenName Javier M.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175534161.16
    83 rdf:type schema:Person
    84 sg:pub.10.1007/jhep02(2010)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006993902
    85 https://doi.org/10.1007/jhep02(2010)073
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1088/1126-6708/1999/12/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003350013
    88 https://doi.org/10.1088/1126-6708/1999/12/017
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1088/1126-6708/2007/09/055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006455927
    91 https://doi.org/10.1088/1126-6708/2007/09/055
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1088/1126-6708/2007/09/120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023220297
    94 https://doi.org/10.1088/1126-6708/2007/09/120
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1088/1126-6708/2007/12/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634012
    97 https://doi.org/10.1088/1126-6708/2007/12/027
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1088/1126-6708/2008/10/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017704824
    100 https://doi.org/10.1088/1126-6708/2008/10/028
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1088/1126-6708/2008/10/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013450009
    103 https://doi.org/10.1088/1126-6708/2008/10/065
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0003-4916(80)90138-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023035279
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0550-3213(94)90206-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047556269
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s0550-3213(98)00824-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008729033
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0550-3213(98)00868-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010461789
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1098/rspa.1978.0022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009236192
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physrevd.18.3598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686225
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrevd.50.2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044632038
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevd.55.5112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043426195
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevd.58.046004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000234924
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevd.64.124023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003217726
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.79.064031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019186743
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevlett.70.2837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387653
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
    130 schema:name Instituto de Física Teórica IFT UAM/CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...