Hasse diagrams for 3d N = 4 quiver gauge theories — Inversion and the full moduli space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-09-24

AUTHORS

Julius F. Grimminger, Amihay Hanany

ABSTRACT

We study Hasse diagrams of moduli spaces of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories. The goal of this work is twofold: 1) We introduce the notion of inverting a Hasse diagram and conjecture that the Coulomb branch and Higgs branch Hasse diagrams of certain theories are related through this operation. 2) We introduce a Hasse diagram to map out the entire moduli space of the theory, including the Coulomb, Higgs and mixed branches. For theories whose Higgs and Coulomb branch Hasse diagrams are related by inversion it is straight forward to generate the Hasse diagram of the entire moduli space. We apply inversion of the Higgs branch Hasse diagram in order to obtain the Coulomb branch Hasse diagram for bad theories and obtain results consistent with the literature. For theories whose Higgs and Coulomb branch Hasse diagrams are not related by inversion it is nevertheless possible to produce the Hasse diagram of the full moduli space using different methods. We give examples for Hasse diagrams of the entire moduli space of theories with enhanced Coulomb branches. More... »

PAGES

159

References to SciGraph publications

  • 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-01. Geometric constraints on the space of N=2 SCFTs. Part III: enhanced Coulomb branches and central charges in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-10-20. Boundaries, mirror symmetry, and symplectic duality in 3d N=4 gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 1987-12. Hyperkähler metrics and supersymmetry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-03. Symplectic singularities in INVENTIONES MATHEMATICAE
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-05. Geometry of the Moment Map for Representations of Quivers in COMPOSITIO MATHEMATICA
  • 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-02-27. Magnetic quivers, Higgs branches, and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-11-06. Moduli space singularities for 3dN=4 circular quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980-10. Minimal singularities inGLn in INVENTIONES MATHEMATICAE
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-10-31. STRATIFIED HYPERKÄHLER SPACES FROM SEMISIMPLE LIE ALGEBRAS in TRANSFORMATION GROUPS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-02-27. Minimally unbalanced quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-07. Hilbert Series and Mixed Branches of T [SU(N )] theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2020)159

    DOI

    http://dx.doi.org/10.1007/jhep09(2020)159

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131199576


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimminger", 
            "givenName": "Julius F.", 
            "id": "sg:person.012432740125.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2019)180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112465433", 
              "https://doi.org/10.1007/jhep02(2019)180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002229900043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041729477", 
              "https://doi.org/10.1007/s002229900043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017558904030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016551337", 
              "https://doi.org/10.1023/a:1017558904030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2020)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125143898", 
              "https://doi.org/10.1007/jhep02(2020)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052766039", 
              "https://doi.org/10.1007/bf01214418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032332974", 
              "https://doi.org/10.1007/bf01394257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124331365", 
              "https://doi.org/10.1007/jhep01(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126020752", 
              "https://doi.org/10.1007/jhep03(2020)176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006158072", 
              "https://doi.org/10.1007/jhep10(2016)108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119905953", 
              "https://doi.org/10.1007/jhep07(2019)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2018)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109759426", 
              "https://doi.org/10.1007/jhep11(2018)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790257", 
              "https://doi.org/10.1007/jhep02(2018)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083765372", 
              "https://doi.org/10.1007/jhep02(2017)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00031-018-9501-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107951961", 
              "https://doi.org/10.1007/s00031-018-9501-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-24", 
        "datePublishedReg": "2020-09-24", 
        "description": "We study Hasse diagrams of moduli spaces of 3d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 quiver gauge theories. The goal of this work is twofold: 1) We introduce the notion of inverting a Hasse diagram and conjecture that the Coulomb branch and Higgs branch Hasse diagrams of certain theories are related through this operation. 2) We introduce a Hasse diagram to map out the entire moduli space of the theory, including the Coulomb, Higgs and mixed branches. For theories whose Higgs and Coulomb branch Hasse diagrams are related by inversion it is straight forward to generate the Hasse diagram of the entire moduli space. We apply inversion of the Higgs branch Hasse diagram in order to obtain the Coulomb branch Hasse diagram for bad theories and obtain results consistent with the literature. For theories whose Higgs and Coulomb branch Hasse diagrams are not related by inversion it is nevertheless possible to produce the Hasse diagram of the full moduli space using different methods. We give examples for Hasse diagrams of the entire moduli space of theories with enhanced Coulomb branches.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2020)159", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8672070", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2020"
          }
        ], 
        "keywords": [
          "entire moduli space", 
          "full moduli space", 
          "Hasse diagram", 
          "moduli space", 
          "Coulomb branch", 
          "quiver gauge theories", 
          "gauge theory", 
          "space", 
          "theory", 
          "Hasse", 
          "diagram", 
          "conjecture", 
          "branches", 
          "certain theories", 
          "Coulomb", 
          "Higgs", 
          "inversion", 
          "different methods", 
          "notion", 
          "operation", 
          "order", 
          "bad theory", 
          "goal", 
          "work", 
          "twofold", 
          "results", 
          "literature", 
          "example", 
          "method"
        ], 
        "name": "Hasse diagrams for 3d N = 4 quiver gauge theories \u2014 Inversion and the full moduli space", 
        "pagination": "159", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131199576"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2020)159"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2020)159", 
          "https://app.dimensions.ai/details/publication/pub.1131199576"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_874.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2020)159"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2020)159'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2020)159'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2020)159'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2020)159'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      21 PREDICATES      80 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2020)159 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4483a78d3fa746958a600ede4479e889
    4 schema:citation sg:pub.10.1007/bf01214418
    5 sg:pub.10.1007/bf01394257
    6 sg:pub.10.1007/bf02565876
    7 sg:pub.10.1007/jhep01(2014)005
    8 sg:pub.10.1007/jhep01(2015)150
    9 sg:pub.10.1007/jhep01(2019)068
    10 sg:pub.10.1007/jhep01(2020)157
    11 sg:pub.10.1007/jhep02(2017)037
    12 sg:pub.10.1007/jhep02(2018)003
    13 sg:pub.10.1007/jhep02(2019)180
    14 sg:pub.10.1007/jhep02(2020)184
    15 sg:pub.10.1007/jhep03(2020)176
    16 sg:pub.10.1007/jhep04(2017)042
    17 sg:pub.10.1007/jhep04(2018)127
    18 sg:pub.10.1007/jhep07(2018)061
    19 sg:pub.10.1007/jhep07(2018)168
    20 sg:pub.10.1007/jhep07(2019)137
    21 sg:pub.10.1007/jhep07(2020)204
    22 sg:pub.10.1007/jhep08(2016)016
    23 sg:pub.10.1007/jhep09(2018)008
    24 sg:pub.10.1007/jhep10(2016)108
    25 sg:pub.10.1007/jhep11(2016)175
    26 sg:pub.10.1007/jhep11(2018)022
    27 sg:pub.10.1007/s00031-018-9501-x
    28 sg:pub.10.1007/s00220-017-2903-0
    29 sg:pub.10.1007/s002229900043
    30 sg:pub.10.1023/a:1017558904030
    31 schema:datePublished 2020-09-24
    32 schema:datePublishedReg 2020-09-24
    33 schema:description We study Hasse diagrams of moduli spaces of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories. The goal of this work is twofold: 1) We introduce the notion of inverting a Hasse diagram and conjecture that the Coulomb branch and Higgs branch Hasse diagrams of certain theories are related through this operation. 2) We introduce a Hasse diagram to map out the entire moduli space of the theory, including the Coulomb, Higgs and mixed branches. For theories whose Higgs and Coulomb branch Hasse diagrams are related by inversion it is straight forward to generate the Hasse diagram of the entire moduli space. We apply inversion of the Higgs branch Hasse diagram in order to obtain the Coulomb branch Hasse diagram for bad theories and obtain results consistent with the literature. For theories whose Higgs and Coulomb branch Hasse diagrams are not related by inversion it is nevertheless possible to produce the Hasse diagram of the full moduli space using different methods. We give examples for Hasse diagrams of the entire moduli space of theories with enhanced Coulomb branches.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N069b9b68ac8e47f0bb024898c749a80d
    37 Nd21b110f254b45edac45866bf58553e3
    38 sg:journal.1052482
    39 schema:keywords Coulomb
    40 Coulomb branch
    41 Hasse
    42 Hasse diagram
    43 Higgs
    44 bad theory
    45 branches
    46 certain theories
    47 conjecture
    48 diagram
    49 different methods
    50 entire moduli space
    51 example
    52 full moduli space
    53 gauge theory
    54 goal
    55 inversion
    56 literature
    57 method
    58 moduli space
    59 notion
    60 operation
    61 order
    62 quiver gauge theories
    63 results
    64 space
    65 theory
    66 twofold
    67 work
    68 schema:name Hasse diagrams for 3d N = 4 quiver gauge theories — Inversion and the full moduli space
    69 schema:pagination 159
    70 schema:productId N6677c48a9248482389553bfcc30db511
    71 N7b258bd0d20841c8aa3af3120fa14e07
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131199576
    73 https://doi.org/10.1007/jhep09(2020)159
    74 schema:sdDatePublished 2022-09-02T16:05
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N645f54af631d403faeb83c72655a0839
    77 schema:url https://doi.org/10.1007/jhep09(2020)159
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N069b9b68ac8e47f0bb024898c749a80d schema:volumeNumber 2020
    82 rdf:type schema:PublicationVolume
    83 N4483a78d3fa746958a600ede4479e889 rdf:first sg:person.012432740125.61
    84 rdf:rest N5af8d78ebd13410c8b09a6fc6b946d0c
    85 N5af8d78ebd13410c8b09a6fc6b946d0c rdf:first sg:person.012155553275.80
    86 rdf:rest rdf:nil
    87 N645f54af631d403faeb83c72655a0839 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N6677c48a9248482389553bfcc30db511 schema:name doi
    90 schema:value 10.1007/jhep09(2020)159
    91 rdf:type schema:PropertyValue
    92 N7b258bd0d20841c8aa3af3120fa14e07 schema:name dimensions_id
    93 schema:value pub.1131199576
    94 rdf:type schema:PropertyValue
    95 Nd21b110f254b45edac45866bf58553e3 schema:issueNumber 9
    96 rdf:type schema:PublicationIssue
    97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Mathematical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Pure Mathematics
    102 rdf:type schema:DefinedTerm
    103 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2020)159
    104 rdf:type schema:MonetaryGrant
    105 sg:grant.8672070 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2020)159
    106 rdf:type schema:MonetaryGrant
    107 sg:journal.1052482 schema:issn 1029-8479
    108 1126-6708
    109 schema:name Journal of High Energy Physics
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    113 schema:familyName Hanany
    114 schema:givenName Amihay
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    116 rdf:type schema:Person
    117 sg:person.012432740125.61 schema:affiliation grid-institutes:grid.7445.2
    118 schema:familyName Grimminger
    119 schema:givenName Julius F.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61
    121 rdf:type schema:Person
    122 sg:pub.10.1007/bf01214418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766039
    123 https://doi.org/10.1007/bf01214418
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01394257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332974
    126 https://doi.org/10.1007/bf01394257
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    129 https://doi.org/10.1007/bf02565876
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    132 https://doi.org/10.1007/jhep01(2014)005
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    135 https://doi.org/10.1007/jhep01(2015)150
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    138 https://doi.org/10.1007/jhep01(2019)068
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
    141 https://doi.org/10.1007/jhep01(2020)157
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep02(2017)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083765372
    144 https://doi.org/10.1007/jhep02(2017)037
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep02(2018)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790257
    147 https://doi.org/10.1007/jhep02(2018)003
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep02(2019)180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112465433
    150 https://doi.org/10.1007/jhep02(2019)180
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep02(2020)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125143898
    153 https://doi.org/10.1007/jhep02(2020)184
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
    156 https://doi.org/10.1007/jhep03(2020)176
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    159 https://doi.org/10.1007/jhep04(2017)042
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    162 https://doi.org/10.1007/jhep04(2018)127
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    165 https://doi.org/10.1007/jhep07(2018)061
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    168 https://doi.org/10.1007/jhep07(2018)168
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
    171 https://doi.org/10.1007/jhep07(2019)137
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    174 https://doi.org/10.1007/jhep07(2020)204
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    177 https://doi.org/10.1007/jhep08(2016)016
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    180 https://doi.org/10.1007/jhep09(2018)008
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep10(2016)108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006158072
    183 https://doi.org/10.1007/jhep10(2016)108
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    186 https://doi.org/10.1007/jhep11(2016)175
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep11(2018)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759426
    189 https://doi.org/10.1007/jhep11(2018)022
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00031-018-9501-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107951961
    192 https://doi.org/10.1007/s00031-018-9501-x
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    195 https://doi.org/10.1007/s00220-017-2903-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s002229900043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041729477
    198 https://doi.org/10.1007/s002229900043
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1023/a:1017558904030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016551337
    201 https://doi.org/10.1023/a:1017558904030
    202 rdf:type schema:CreativeWork
    203 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    204 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...