Effective field theory of black hole echoes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

C. P. Burgess, Ryan Plestid, Markus Rummel

ABSTRACT

Gravitational wave ‘echoes’ during black-hole merging events have been advocated as possible signals of modifications to gravity in the strong-field (but semiclassical) regime. In these proposals the observable effect comes entirely from the appearance of nonzero reflection probability at the horizon, which vanishes for a standard black hole. We show how to apply EFT reasoning to these arguments, using and extending earlier work for localized systems that relates choices of boundary condition to the action for the physics responsible for these boundary conditions. EFT reasoning applied to this action argues that linear ‘Robin’ boundary conditions dominate at low energies, and we determine the relationship between the corresponding effective coupling (whose value is the one relevant low-energy prediction of particular modifications to General Relativity for these systems) and the phenomenologically measurable near-horizon reflection coefficient. Because this connection involves only near-horizon physics it is comparatively simple to establish, and we do so for perturbations in both the Schwarzschild geometry (which is the one most often studied theoretically) and the Kerr geometry (which is the one of observational interest for post-merger ring down). In passing we identify the renormalization-group evolution of the effective couplings as a function of a regularization distance from the horizon, that enforces how physics does not depend on the precise position where the boundary conditions are imposed. We show that the perfect-absorber/perfect-emitter boundary conditions of General Relativity correspond to the only fixed points of this evolution. Nontrivial running of all other RG evolution reflects how modifications to gravity necessarily introduce new physics near the horizon. More... »

PAGES

113

Journal

TITLE

Journal of High Energy Physics

ISSUE

9

VOLUME

2018

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep09(2018)113

DOI

http://dx.doi.org/10.1007/jhep09(2018)113

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107125200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Physics & Astronomy, McMaster University, L8S 4M1, Hamilton, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgess", 
        "givenName": "C. P.", 
        "id": "sg:person.013540771210.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540771210.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Physics & Astronomy, McMaster University, L8S 4M1, Hamilton, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plestid", 
        "givenName": "Ryan", 
        "id": "sg:person.0744377146.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744377146.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Physics & Astronomy, McMaster University, L8S 4M1, Hamilton, ON, Canada", 
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rummel", 
        "givenName": "Markus", 
        "id": "sg:person.016023106516.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023106516.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aop.2006.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002595109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2009.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006617183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.024036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010358425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.024036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010358425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.211303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012217644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.211303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012217644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012812912", 
          "https://doi.org/10.1038/nature04626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012812912", 
          "https://doi.org/10.1038/nature04626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012812912", 
          "https://doi.org/10.1038/nature04626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(01)00620-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013377999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/30/17/175007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014272816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.200410203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.200410203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(70)90349-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016186872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(70)90349-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016186872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/12/099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018695104", 
          "https://doi.org/10.1088/1126-6708/2007/12/099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.104029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021054041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.104029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021054041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.104029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021054041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(79)90189-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022663276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(79)90189-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022663276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.084031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022850616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.084031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022850616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.145301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.145301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023406972", 
          "https://doi.org/10.1007/jhep02(2013)062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/33/5/054001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023695268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.12942/lrr-2014-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026178669", 
          "https://doi.org/10.12942/lrr-2014-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19000-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621153", 
          "https://doi.org/10.1007/978-3-319-19000-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/32/24/243001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029430445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/26/7/073001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029921666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4756962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036990944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2011.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038891523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.125013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039518102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.125013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039518102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040532386", 
          "https://doi.org/10.1007/bf01645859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040532386", 
          "https://doi.org/10.1007/bf01645859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.124040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045781511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.124040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045781511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.12942/lrr-2003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052593523", 
          "https://doi.org/10.12942/lrr-2003-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/152444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058483734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.164.1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060436985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.164.1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060436985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.186.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060442785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.186.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060442785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.33.915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060693809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.33.915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060693809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060699983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.1840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060699983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.024013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.024013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.171101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.171101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2017)106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084959829", 
          "https://doi.org/10.1007/jhep04(2017)106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2017)072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090689769", 
          "https://doi.org/10.1007/jhep07(2017)072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2017)007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091493308", 
          "https://doi.org/10.1007/jhep09(2017)007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.064045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091964740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.064045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091964740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.084002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092079153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.084002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092079153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.082004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092423207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.082004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092423207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.104047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093035719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.104047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093035719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.024040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100673599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.024040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100673599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.084030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103534395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.084030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103534395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.124037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104689116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.124037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104689116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.124044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104980228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.124044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104980228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.024023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105577721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.024023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105577721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.044018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106102293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.044018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106102293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2018)059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106158508", 
          "https://doi.org/10.1007/jhep08(2018)059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.044021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106161385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.98.044021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106161385"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Gravitational wave \u2018echoes\u2019 during black-hole merging events have been advocated as possible signals of modifications to gravity in the strong-field (but semiclassical) regime. In these proposals the observable effect comes entirely from the appearance of nonzero reflection probability at the horizon, which vanishes for a standard black hole. We show how to apply EFT reasoning to these arguments, using and extending earlier work for localized systems that relates choices of boundary condition to the action for the physics responsible for these boundary conditions. EFT reasoning applied to this action argues that linear \u2018Robin\u2019 boundary conditions dominate at low energies, and we determine the relationship between the corresponding effective coupling (whose value is the one relevant low-energy prediction of particular modifications to General Relativity for these systems) and the phenomenologically measurable near-horizon reflection coefficient. Because this connection involves only near-horizon physics it is comparatively simple to establish, and we do so for perturbations in both the Schwarzschild geometry (which is the one most often studied theoretically) and the Kerr geometry (which is the one of observational interest for post-merger ring down). In passing we identify the renormalization-group evolution of the effective couplings as a function of a regularization distance from the horizon, that enforces how physics does not depend on the precise position where the boundary conditions are imposed. We show that the perfect-absorber/perfect-emitter boundary conditions of General Relativity correspond to the only fixed points of this evolution. Nontrivial running of all other RG evolution reflects how modifications to gravity necessarily introduce new physics near the horizon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep09(2018)113", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Effective field theory of black hole echoes", 
    "pagination": "113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0f45ece5ad695609cca62ba259e34fa247eb7113fb31db0228e503945fe9290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep09(2018)113"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107125200"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep09(2018)113", 
      "https://app.dimensions.ai/details/publication/pub.1107125200"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP09%282018%29113"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)113'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)113'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)113'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)113'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep09(2018)113 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc23f8483494b49b1a742212b93884a33
4 schema:citation sg:pub.10.1007/978-3-319-19000-6_1
5 sg:pub.10.1007/bf01645859
6 sg:pub.10.1007/jhep02(2013)062
7 sg:pub.10.1007/jhep04(2017)106
8 sg:pub.10.1007/jhep07(2017)072
9 sg:pub.10.1007/jhep08(2018)059
10 sg:pub.10.1007/jhep09(2017)007
11 sg:pub.10.1038/nature04626
12 sg:pub.10.1088/1126-6708/2007/12/099
13 sg:pub.10.12942/lrr-2003-5
14 sg:pub.10.12942/lrr-2014-4
15 https://doi.org/10.1002/prop.200410203
16 https://doi.org/10.1016/0370-2693(70)90349-7
17 https://doi.org/10.1016/0375-9474(79)90189-1
18 https://doi.org/10.1016/j.aop.2006.10.011
19 https://doi.org/10.1016/j.aop.2009.10.002
20 https://doi.org/10.1016/s0550-3213(01)00620-4
21 https://doi.org/10.1063/1.4756962
22 https://doi.org/10.1086/152444
23 https://doi.org/10.1088/0264-9381/26/7/073001
24 https://doi.org/10.1088/0264-9381/30/17/175007
25 https://doi.org/10.1088/0264-9381/32/24/243001
26 https://doi.org/10.1088/0264-9381/33/5/054001
27 https://doi.org/10.1098/rsta.2011.0001
28 https://doi.org/10.1103/physrev.164.1776
29 https://doi.org/10.1103/physrev.186.1335
30 https://doi.org/10.1103/physrevd.33.915
31 https://doi.org/10.1103/physrevd.45.1840
32 https://doi.org/10.1103/physrevd.68.125013
33 https://doi.org/10.1103/physrevd.71.104029
34 https://doi.org/10.1103/physrevd.71.124040
35 https://doi.org/10.1103/physrevd.73.024013
36 https://doi.org/10.1103/physrevd.86.024036
37 https://doi.org/10.1103/physrevd.94.084031
38 https://doi.org/10.1103/physrevd.96.064045
39 https://doi.org/10.1103/physrevd.96.082004
40 https://doi.org/10.1103/physrevd.96.084002
41 https://doi.org/10.1103/physrevd.96.104047
42 https://doi.org/10.1103/physrevd.97.024040
43 https://doi.org/10.1103/physrevd.97.084030
44 https://doi.org/10.1103/physrevd.97.124037
45 https://doi.org/10.1103/physrevd.97.124044
46 https://doi.org/10.1103/physrevd.98.024023
47 https://doi.org/10.1103/physrevd.98.044018
48 https://doi.org/10.1103/physrevd.98.044021
49 https://doi.org/10.1103/physrevlett.106.145301
50 https://doi.org/10.1103/physrevlett.116.171101
51 https://doi.org/10.1103/physrevlett.26.331
52 https://doi.org/10.1103/physrevlett.88.211303
53 https://doi.org/10.1126/science.1132305
54 schema:datePublished 2018-09
55 schema:datePublishedReg 2018-09-01
56 schema:description Gravitational wave ‘echoes’ during black-hole merging events have been advocated as possible signals of modifications to gravity in the strong-field (but semiclassical) regime. In these proposals the observable effect comes entirely from the appearance of nonzero reflection probability at the horizon, which vanishes for a standard black hole. We show how to apply EFT reasoning to these arguments, using and extending earlier work for localized systems that relates choices of boundary condition to the action for the physics responsible for these boundary conditions. EFT reasoning applied to this action argues that linear ‘Robin’ boundary conditions dominate at low energies, and we determine the relationship between the corresponding effective coupling (whose value is the one relevant low-energy prediction of particular modifications to General Relativity for these systems) and the phenomenologically measurable near-horizon reflection coefficient. Because this connection involves only near-horizon physics it is comparatively simple to establish, and we do so for perturbations in both the Schwarzschild geometry (which is the one most often studied theoretically) and the Kerr geometry (which is the one of observational interest for post-merger ring down). In passing we identify the renormalization-group evolution of the effective couplings as a function of a regularization distance from the horizon, that enforces how physics does not depend on the precise position where the boundary conditions are imposed. We show that the perfect-absorber/perfect-emitter boundary conditions of General Relativity correspond to the only fixed points of this evolution. Nontrivial running of all other RG evolution reflects how modifications to gravity necessarily introduce new physics near the horizon.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N0acebc1a36164abfb76929c1f8c68f1a
61 Nfb0f51e565144039bddb64677cc30834
62 sg:journal.1052482
63 schema:name Effective field theory of black hole echoes
64 schema:pagination 113
65 schema:productId N4e6b3a8da51c428a94599a142aaffa86
66 N58d76e66b0ed48779624d914105cae56
67 N73a790e92416403d9bba1d6ea84489cc
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107125200
69 https://doi.org/10.1007/jhep09(2018)113
70 schema:sdDatePublished 2019-04-10T15:56
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N152b6c383148496fb748140eb3df4b19
73 schema:url http://link.springer.com/10.1007%2FJHEP09%282018%29113
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N00ece133ad0b4e089a6b0130fe609826 rdf:first sg:person.0744377146.03
78 rdf:rest N0312a4a6f2ae4b5c87f871f5838a11ea
79 N0312a4a6f2ae4b5c87f871f5838a11ea rdf:first sg:person.016023106516.52
80 rdf:rest rdf:nil
81 N0acebc1a36164abfb76929c1f8c68f1a schema:issueNumber 9
82 rdf:type schema:PublicationIssue
83 N152b6c383148496fb748140eb3df4b19 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N4e6b3a8da51c428a94599a142aaffa86 schema:name dimensions_id
86 schema:value pub.1107125200
87 rdf:type schema:PropertyValue
88 N58d76e66b0ed48779624d914105cae56 schema:name readcube_id
89 schema:value b0f45ece5ad695609cca62ba259e34fa247eb7113fb31db0228e503945fe9290
90 rdf:type schema:PropertyValue
91 N73a790e92416403d9bba1d6ea84489cc schema:name doi
92 schema:value 10.1007/jhep09(2018)113
93 rdf:type schema:PropertyValue
94 Nc23f8483494b49b1a742212b93884a33 rdf:first sg:person.013540771210.88
95 rdf:rest N00ece133ad0b4e089a6b0130fe609826
96 Nfb0f51e565144039bddb64677cc30834 schema:volumeNumber 2018
97 rdf:type schema:PublicationVolume
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:journal.1052482 schema:issn 1029-8479
105 1126-6708
106 schema:name Journal of High Energy Physics
107 rdf:type schema:Periodical
108 sg:person.013540771210.88 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
109 schema:familyName Burgess
110 schema:givenName C. P.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540771210.88
112 rdf:type schema:Person
113 sg:person.016023106516.52 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
114 schema:familyName Rummel
115 schema:givenName Markus
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023106516.52
117 rdf:type schema:Person
118 sg:person.0744377146.03 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
119 schema:familyName Plestid
120 schema:givenName Ryan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744377146.03
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-319-19000-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026621153
124 https://doi.org/10.1007/978-3-319-19000-6_1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01645859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040532386
127 https://doi.org/10.1007/bf01645859
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/jhep02(2013)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023406972
130 https://doi.org/10.1007/jhep02(2013)062
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/jhep04(2017)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084959829
133 https://doi.org/10.1007/jhep04(2017)106
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/jhep07(2017)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090689769
136 https://doi.org/10.1007/jhep07(2017)072
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/jhep08(2018)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106158508
139 https://doi.org/10.1007/jhep08(2018)059
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/jhep09(2017)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091493308
142 https://doi.org/10.1007/jhep09(2017)007
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature04626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012812912
145 https://doi.org/10.1038/nature04626
146 rdf:type schema:CreativeWork
147 sg:pub.10.1088/1126-6708/2007/12/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018695104
148 https://doi.org/10.1088/1126-6708/2007/12/099
149 rdf:type schema:CreativeWork
150 sg:pub.10.12942/lrr-2003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052593523
151 https://doi.org/10.12942/lrr-2003-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.12942/lrr-2014-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026178669
154 https://doi.org/10.12942/lrr-2014-4
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/prop.200410203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542655
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0370-2693(70)90349-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016186872
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0375-9474(79)90189-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022663276
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.aop.2006.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002595109
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.aop.2009.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006617183
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0550-3213(01)00620-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013377999
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.4756962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036990944
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1086/152444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058483734
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0264-9381/26/7/073001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029921666
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0264-9381/30/17/175007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014272816
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0264-9381/32/24/243001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029430445
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0264-9381/33/5/054001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023695268
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1098/rsta.2011.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038891523
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrev.164.1776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060436985
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrev.186.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060442785
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevd.33.915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060693809
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevd.45.1840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060699983
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevd.68.125013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039518102
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevd.71.104029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021054041
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevd.71.124040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045781511
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevd.73.024013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060706327
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevd.86.024036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010358425
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevd.94.084031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022850616
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevd.96.064045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091964740
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevd.96.082004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092423207
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevd.96.084002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092079153
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevd.96.104047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093035719
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevd.97.024040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100673599
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevd.97.084030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103534395
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevd.97.124037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104689116
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevd.97.124044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104980228
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevd.98.024023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105577721
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevd.98.044018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106102293
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevd.98.044021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106161385
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.106.145301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023328505
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.116.171101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765455
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.26.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774546
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.88.211303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012217644
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1132305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454706
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
235 schema:name Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, Ontario, Canada
236 Physics & Astronomy, McMaster University, L8S 4M1, Hamilton, ON, Canada
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...