Quiver subtractions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-03

AUTHORS

Santiago Cabrera, Amihay Hanany

ABSTRACT

We study the vacuum structure of gauge theories with eight supercharges. It has been recently discovered that in the Higgs branch of 5d and 6d SQCD theories with eight supercharges, the new massless states, arising when the gauge coupling is taken to infinity, can be described in terms of Coulomb branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver gauge theories. The description of this new phenomenon draws from the ideas discovered in the analysis of nilpotent orbits as Higgs and Coulomb branches of 3d theories and promotes the Higgs mechanism known as the Kraft-Procesi transition to the status of a new operation between quivers. This is the quiver subtraction. This paper establishes this operation formally and examines some immediate consequences. One is the extension of the physical realization of Kraft-Procesi transitions from the classical to the exceptional Lie algebras. Another result is the extension from special nilpotent orbits to non-special ones. One further consequence is the analysis of the effect in 5dN=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD of integrating out a massive quark while the gauge coupling remains infinite. In general, the subtraction of quivers sheds light on the different types of singularities within the Coulomb branch and the structure of the massless states that arise at those singular points; including the nature of the new Higgs branches that open up. This allows for a systematic analysis of mixed branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quivers that do not necessarily have a simple embedding in string theory. The subtraction of two quivers is an extremely simple resource for the theoretical physicist interested in the vacuum structure of gauge theories, and yet its power is so remarkable that is bound to play a crucial role in the coming discoveries of new and exciting physics in 5 and 6 dimensions. More... »

PAGES

8

References to SciGraph publications

  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-30. Non-Lagrangian theories from brane junctions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-23. T-branes, anomalies and moduli spaces in 6D SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980. Simple Singularities and Simple Algebraic Groups in NONE
  • 2017-10-10. Small instanton transitions for M5 fractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980-10. Minimal singularities inGLn in INVENTIONES MATHEMATICAE
  • 2012-10-22. 5-dim superconformal index with enhanced En global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-25. 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-09. ADHM and the 4d quantum Hall effect in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-05. Duality walls and defects in 5d N=1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-10. Fiber-base duality and global symmetry enhancement in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-03-09. Five-branes, seven-branes and five-dimensional En field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-28. 5d fixed points from brane webs and O7-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Duality and enhancement of symmetry in 5d gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1979-10. Closures of conjugacy classes of matrices are normal in INVENTIONES MATHEMATICAE
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2015-08-19. A new 5d description of 6d D-type minimal conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-31. Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-15. 6D RG flows and nilpotent hierarchies in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2018)008

    DOI

    http://dx.doi.org/10.1007/jhep09(2018)008

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106581267


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cabrera", 
            "givenName": "Santiago", 
            "id": "sg:person.015574474365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2017)019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048309115", 
              "https://doi.org/10.1007/jhep01(2017)019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01389764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050815107", 
              "https://doi.org/10.1007/bf01389764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020531009", 
              "https://doi.org/10.1007/bfb0090294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043273302", 
              "https://doi.org/10.1007/jhep04(2015)052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798386", 
              "https://doi.org/10.1007/jhep07(2016)082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103239285", 
              "https://doi.org/10.1007/jhep04(2018)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048020345", 
              "https://doi.org/10.1007/jhep10(2012)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004298067", 
              "https://doi.org/10.1007/jhep08(2015)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092342829", 
              "https://doi.org/10.1007/jhep10(2017)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004764583", 
              "https://doi.org/10.1007/jhep12(2014)116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032332974", 
              "https://doi.org/10.1007/bf01394257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038757919", 
              "https://doi.org/10.1007/jhep03(2014)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045230132", 
              "https://doi.org/10.1007/jhep01(2014)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029205466", 
              "https://doi.org/10.1007/jhep12(2015)163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092166212", 
              "https://doi.org/10.1007/jhep10(2017)055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/03/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003426598", 
              "https://doi.org/10.1088/1126-6708/1999/03/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037200750", 
              "https://doi.org/10.1007/jhep07(2015)167"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-03", 
        "datePublishedReg": "2018-09-03", 
        "description": "We study the vacuum structure of gauge theories with eight supercharges. It has been recently discovered that in the Higgs branch of 5d and 6d SQCD theories with eight supercharges, the new massless states, arising when the gauge coupling is taken to infinity, can be described in terms of Coulomb branches of 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} quiver gauge theories. The description of this new phenomenon draws from the ideas discovered in the analysis of nilpotent orbits as Higgs and Coulomb branches of 3d theories and promotes the Higgs mechanism known as the Kraft-Procesi transition to the status of a new operation between quivers. This is the quiver subtraction. This paper establishes this operation formally and examines some immediate consequences. One is the extension of the physical realization of Kraft-Procesi transitions from the classical to the exceptional Lie algebras. Another result is the extension from special nilpotent orbits to non-special ones. One further consequence is the analysis of the effect in 5dN=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=1 $$\\end{document} SQCD of integrating out a massive quark while the gauge coupling remains infinite. In general, the subtraction of quivers sheds light on the different types of singularities within the Coulomb branch and the structure of the massless states that arise at those singular points; including the nature of the new Higgs branches that open up. This allows for a systematic analysis of mixed branches of 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} quivers that do not necessarily have a simple embedding in string theory. The subtraction of two quivers is an extremely simple resource for the theoretical physicist interested in the vacuum structure of gauge theories, and yet its power is so remarkable that is bound to play a crucial role in the coming discoveries of new and exciting physics in 5 and 6 dimensions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2018)008", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "Kraft-Procesi transitions", 
          "Coulomb branch", 
          "nilpotent orbits", 
          "Higgs branch", 
          "gauge theory", 
          "vacuum structure", 
          "massless states", 
          "exceptional Lie algebras", 
          "Lie algebra", 
          "string theory", 
          "gauge couplings", 
          "SQCD theories", 
          "singular points", 
          "theoretical physicists", 
          "exciting physics", 
          "quivers", 
          "physical realization", 
          "Higgs mechanism", 
          "simple embedding", 
          "mixed branches", 
          "supercharges", 
          "theory", 
          "immediate consequence", 
          "orbit", 
          "algebra", 
          "new phenomenon", 
          "singularity", 
          "physics", 
          "infinity", 
          "extension", 
          "coupling", 
          "SQCD", 
          "new operation", 
          "physicists", 
          "further consequences", 
          "branches", 
          "Classical", 
          "transition", 
          "subtraction", 
          "embedding", 
          "massive quarks", 
          "structure", 
          "realization", 
          "description", 
          "state", 
          "simple resources", 
          "dimensions", 
          "operation", 
          "terms", 
          "different types", 
          "point", 
          "phenomenon", 
          "systematic analysis", 
          "Higgs", 
          "analysis", 
          "one", 
          "idea", 
          "power", 
          "quarks", 
          "crucial role", 
          "results", 
          "nature", 
          "consequences", 
          "types", 
          "effect", 
          "resources", 
          "light", 
          "discovery", 
          "mechanism", 
          "role", 
          "status", 
          "paper"
        ], 
        "name": "Quiver subtractions", 
        "pagination": "8", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106581267"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2018)008"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2018)008", 
          "https://app.dimensions.ai/details/publication/pub.1106581267"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_782.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2018)008"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)008'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)008'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)008'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2018)008'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      127 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2018)008 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc18ef776a4df4444993bb7c2fba8b5fe
    4 schema:citation sg:pub.10.1007/bf01389764
    5 sg:pub.10.1007/bf01394257
    6 sg:pub.10.1007/bf02565876
    7 sg:pub.10.1007/bfb0090294
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2014)175
    10 sg:pub.10.1007/jhep01(2015)150
    11 sg:pub.10.1007/jhep01(2017)019
    12 sg:pub.10.1007/jhep03(2014)112
    13 sg:pub.10.1007/jhep04(2015)052
    14 sg:pub.10.1007/jhep04(2018)040
    15 sg:pub.10.1007/jhep04(2018)127
    16 sg:pub.10.1007/jhep06(2016)130
    17 sg:pub.10.1007/jhep07(2015)167
    18 sg:pub.10.1007/jhep07(2016)082
    19 sg:pub.10.1007/jhep07(2018)061
    20 sg:pub.10.1007/jhep07(2018)098
    21 sg:pub.10.1007/jhep08(2015)097
    22 sg:pub.10.1007/jhep09(2010)063
    23 sg:pub.10.1007/jhep10(2012)142
    24 sg:pub.10.1007/jhep10(2017)055
    25 sg:pub.10.1007/jhep10(2017)158
    26 sg:pub.10.1007/jhep11(2016)175
    27 sg:pub.10.1007/jhep11(2017)079
    28 sg:pub.10.1007/jhep11(2017)126
    29 sg:pub.10.1007/jhep12(2014)103
    30 sg:pub.10.1007/jhep12(2014)116
    31 sg:pub.10.1007/jhep12(2015)163
    32 sg:pub.10.1088/1126-6708/1998/01/002
    33 sg:pub.10.1088/1126-6708/1999/03/006
    34 sg:pub.10.1088/1126-6708/2000/11/033
    35 schema:datePublished 2018-09-03
    36 schema:datePublishedReg 2018-09-03
    37 schema:description We study the vacuum structure of gauge theories with eight supercharges. It has been recently discovered that in the Higgs branch of 5d and 6d SQCD theories with eight supercharges, the new massless states, arising when the gauge coupling is taken to infinity, can be described in terms of Coulomb branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver gauge theories. The description of this new phenomenon draws from the ideas discovered in the analysis of nilpotent orbits as Higgs and Coulomb branches of 3d theories and promotes the Higgs mechanism known as the Kraft-Procesi transition to the status of a new operation between quivers. This is the quiver subtraction. This paper establishes this operation formally and examines some immediate consequences. One is the extension of the physical realization of Kraft-Procesi transitions from the classical to the exceptional Lie algebras. Another result is the extension from special nilpotent orbits to non-special ones. One further consequence is the analysis of the effect in 5dN=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD of integrating out a massive quark while the gauge coupling remains infinite. In general, the subtraction of quivers sheds light on the different types of singularities within the Coulomb branch and the structure of the massless states that arise at those singular points; including the nature of the new Higgs branches that open up. This allows for a systematic analysis of mixed branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quivers that do not necessarily have a simple embedding in string theory. The subtraction of two quivers is an extremely simple resource for the theoretical physicist interested in the vacuum structure of gauge theories, and yet its power is so remarkable that is bound to play a crucial role in the coming discoveries of new and exciting physics in 5 and 6 dimensions.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf Nc3b44c7995064b3f8384270c299c52b2
    41 Nea442ef15c2142c58db8badf5389e7dc
    42 sg:journal.1052482
    43 schema:keywords Classical
    44 Coulomb branch
    45 Higgs
    46 Higgs branch
    47 Higgs mechanism
    48 Kraft-Procesi transitions
    49 Lie algebra
    50 SQCD
    51 SQCD theories
    52 algebra
    53 analysis
    54 branches
    55 consequences
    56 coupling
    57 crucial role
    58 description
    59 different types
    60 dimensions
    61 discovery
    62 effect
    63 embedding
    64 exceptional Lie algebras
    65 exciting physics
    66 extension
    67 further consequences
    68 gauge couplings
    69 gauge theory
    70 idea
    71 immediate consequence
    72 infinity
    73 light
    74 massive quarks
    75 massless states
    76 mechanism
    77 mixed branches
    78 nature
    79 new operation
    80 new phenomenon
    81 nilpotent orbits
    82 one
    83 operation
    84 orbit
    85 paper
    86 phenomenon
    87 physical realization
    88 physicists
    89 physics
    90 point
    91 power
    92 quarks
    93 quivers
    94 realization
    95 resources
    96 results
    97 role
    98 simple embedding
    99 simple resources
    100 singular points
    101 singularity
    102 state
    103 status
    104 string theory
    105 structure
    106 subtraction
    107 supercharges
    108 systematic analysis
    109 terms
    110 theoretical physicists
    111 theory
    112 transition
    113 types
    114 vacuum structure
    115 schema:name Quiver subtractions
    116 schema:pagination 8
    117 schema:productId N822c3f5303074b1e93d89acc25671d0a
    118 Nf16db056d25b48e39508d946892439b9
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    120 https://doi.org/10.1007/jhep09(2018)008
    121 schema:sdDatePublished 2022-09-02T16:02
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher Nd6b6655ff4be484ab012647f25321f50
    124 schema:url https://doi.org/10.1007/jhep09(2018)008
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N822c3f5303074b1e93d89acc25671d0a schema:name doi
    129 schema:value 10.1007/jhep09(2018)008
    130 rdf:type schema:PropertyValue
    131 Nc18ef776a4df4444993bb7c2fba8b5fe rdf:first sg:person.015574474365.83
    132 rdf:rest Nfe32f8ed631f404a83e2f1eaeb8bb456
    133 Nc3b44c7995064b3f8384270c299c52b2 schema:volumeNumber 2018
    134 rdf:type schema:PublicationVolume
    135 Nd6b6655ff4be484ab012647f25321f50 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 Nea442ef15c2142c58db8badf5389e7dc schema:issueNumber 9
    138 rdf:type schema:PublicationIssue
    139 Nf16db056d25b48e39508d946892439b9 schema:name dimensions_id
    140 schema:value pub.1106581267
    141 rdf:type schema:PropertyValue
    142 Nfe32f8ed631f404a83e2f1eaeb8bb456 rdf:first sg:person.012155553275.80
    143 rdf:rest rdf:nil
    144 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Mathematical Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Pure Mathematics
    149 rdf:type schema:DefinedTerm
    150 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2018)008
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2018)008
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1052482 schema:issn 1029-8479
    155 1126-6708
    156 schema:name Journal of High Energy Physics
    157 schema:publisher Springer Nature
    158 rdf:type schema:Periodical
    159 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    160 schema:familyName Hanany
    161 schema:givenName Amihay
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    163 rdf:type schema:Person
    164 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
    165 schema:familyName Cabrera
    166 schema:givenName Santiago
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
    168 rdf:type schema:Person
    169 sg:pub.10.1007/bf01389764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815107
    170 https://doi.org/10.1007/bf01389764
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf01394257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332974
    173 https://doi.org/10.1007/bf01394257
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    176 https://doi.org/10.1007/bf02565876
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/bfb0090294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531009
    179 https://doi.org/10.1007/bfb0090294
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    182 https://doi.org/10.1007/jhep01(2014)005
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep01(2014)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045230132
    185 https://doi.org/10.1007/jhep01(2014)175
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    188 https://doi.org/10.1007/jhep01(2015)150
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep01(2017)019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048309115
    191 https://doi.org/10.1007/jhep01(2017)019
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep03(2014)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038757919
    194 https://doi.org/10.1007/jhep03(2014)112
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep04(2015)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043273302
    197 https://doi.org/10.1007/jhep04(2015)052
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep04(2018)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103239285
    200 https://doi.org/10.1007/jhep04(2018)040
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    203 https://doi.org/10.1007/jhep04(2018)127
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    206 https://doi.org/10.1007/jhep06(2016)130
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep07(2015)167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037200750
    209 https://doi.org/10.1007/jhep07(2015)167
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep07(2016)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798386
    212 https://doi.org/10.1007/jhep07(2016)082
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    215 https://doi.org/10.1007/jhep07(2018)061
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    218 https://doi.org/10.1007/jhep07(2018)098
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep08(2015)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004298067
    221 https://doi.org/10.1007/jhep08(2015)097
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    224 https://doi.org/10.1007/jhep09(2010)063
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep10(2012)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020345
    227 https://doi.org/10.1007/jhep10(2012)142
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep10(2017)055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092166212
    230 https://doi.org/10.1007/jhep10(2017)055
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep10(2017)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092342829
    233 https://doi.org/10.1007/jhep10(2017)158
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    236 https://doi.org/10.1007/jhep11(2016)175
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    239 https://doi.org/10.1007/jhep11(2017)079
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    242 https://doi.org/10.1007/jhep11(2017)126
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    245 https://doi.org/10.1007/jhep12(2014)103
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/jhep12(2014)116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004764583
    248 https://doi.org/10.1007/jhep12(2014)116
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/jhep12(2015)163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029205466
    251 https://doi.org/10.1007/jhep12(2015)163
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    254 https://doi.org/10.1088/1126-6708/1998/01/002
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1088/1126-6708/1999/03/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426598
    257 https://doi.org/10.1088/1126-6708/1999/03/006
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    260 https://doi.org/10.1088/1126-6708/2000/11/033
    261 rdf:type schema:CreativeWork
    262 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
    263 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, United Kingdom
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...