On three-dimensional quiver gauge theories of type B View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-15

AUTHORS

Anindya Dey, Amihay Hanany, Peter Koroteev, Noppadol Mekareeya

ABSTRACT

We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine BN quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine BN quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine BN quiver. More... »

PAGES

67

References to SciGraph publications

  • 2014-10-17. Down the rabbit hole with theories of class S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-07. Seiberg-Witten for Spin(n) with spinors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-14. Three dimensional mirror symmetry and partition function on S3 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-04-11. On three-dimensional mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-04. Index for three dimensional superconformal field theories with general R-charge assignments in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. SUSY gauge theories on squashed three-spheres in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-17. Partition functions of 3d D^-quivers and their mirror duals from 1d free fermions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-17. Exact results for Wilson loops in superconformal Chern-Simons theories with matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-30. 4d gauge theories and quivers: the non-simply laced case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and đť’© = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-10-06. Nonperturbative tests of three-dimensional dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-05-22. 3D-partition functions on the sphere: exact evaluation and mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-21. Hanany-Witten effect and SL(2, ℤ) dualities in matrix models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05-04. 3d mirror symmetry as a canonical transformation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06-10. Mirror symmetry in three dimensions via gauged linear quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-12-15. Dn quivers from branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-27. On three dimensional quiver gauge theories and integrability in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-06. Superconformal indices of three-dimensional theories related by mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2017)067

    DOI

    http://dx.doi.org/10.1007/jhep09(2017)067

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091817147


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "New High Energy Theory Center, Rutgers University, Piscataway, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "New High Energy Theory Center, Rutgers University, Piscataway, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dey", 
            "givenName": "Anindya", 
            "id": "sg:person.07543351155.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543351155.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of California, Davis, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada", 
                "Department of Mathematics, University of California, Davis, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koroteev", 
            "givenName": "Peter", 
            "id": "sg:person.011504353136.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504353136.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470207.6", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy", 
                "INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mekareeya", 
            "givenName": "Noppadol", 
            "id": "sg:person.014662114762.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023665909", 
              "https://doi.org/10.1007/jhep05(2012)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019666118", 
              "https://doi.org/10.1007/jhep10(2014)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003742519", 
              "https://doi.org/10.1007/jhep05(2011)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026075445", 
              "https://doi.org/10.1007/jhep10(2012)190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039531876", 
              "https://doi.org/10.1007/jhep08(2015)071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2012)051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032157862", 
              "https://doi.org/10.1007/jhep04(2012)051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069294", 
              "https://doi.org/10.1007/jhep06(2014)059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027488820", 
              "https://doi.org/10.1007/jhep04(2011)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043871977", 
              "https://doi.org/10.1007/jhep05(2013)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052358077", 
              "https://doi.org/10.1007/jhep03(2010)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011632922", 
              "https://doi.org/10.1007/jhep05(2015)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000460191", 
              "https://doi.org/10.1007/jhep08(2015)027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024132084", 
              "https://doi.org/10.1007/jhep10(2013)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003229445", 
              "https://doi.org/10.1007/jhep10(2014)117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/12/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027763459", 
              "https://doi.org/10.1088/1126-6708/1998/12/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018065582", 
              "https://doi.org/10.1007/jhep10(2010)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015999099", 
              "https://doi.org/10.1007/jhep06(2011)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-15", 
        "datePublishedReg": "2017-09-15", 
        "description": "We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine BN quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine BN quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine BN quiver.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2017)067", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3938182", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "quiver gauge theories", 
          "S-duality", 
          "three-dimensional mirror symmetry", 
          "gauge theory", 
          "partition function", 
          "supersymmetric quiver gauge theories", 
          "three-dimensional quiver gauge theories", 
          "Chern-Simons term", 
          "supersymmetric partition functions", 
          "Chern-Simons coupling", 
          "global symmetry", 
          "superconformal index", 
          "quivers", 
          "mirror symmetry", 
          "theory", 
          "symmetry", 
          "Lagrangian", 
          "instantons", 
          "BN", 
          "formula", 
          "function", 
          "coupling", 
          "correspondence", 
          "terms", 
          "sphere", 
          "transformation", 
          "addition", 
          "index", 
          "collection", 
          "type B"
        ], 
        "name": "On three-dimensional quiver gauge theories of type B", 
        "pagination": "67", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091817147"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2017)067"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2017)067", 
          "https://app.dimensions.ai/details/publication/pub.1091817147"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_730.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2017)067"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2017)067'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2017)067'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2017)067'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2017)067'


     

    This table displays all metadata directly associated to this object as RDF triples.

    237 TRIPLES      21 PREDICATES      82 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2017)067 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7d50c4487a9045d1bcb0a7d3c955e53a
    4 schema:citation sg:pub.10.1007/jhep01(2013)070
    5 sg:pub.10.1007/jhep01(2014)005
    6 sg:pub.10.1007/jhep03(2010)089
    7 sg:pub.10.1007/jhep04(2011)007
    8 sg:pub.10.1007/jhep04(2012)051
    9 sg:pub.10.1007/jhep05(2011)014
    10 sg:pub.10.1007/jhep05(2012)099
    11 sg:pub.10.1007/jhep05(2012)145
    12 sg:pub.10.1007/jhep05(2013)126
    13 sg:pub.10.1007/jhep05(2015)004
    14 sg:pub.10.1007/jhep06(2010)100
    15 sg:pub.10.1007/jhep06(2011)008
    16 sg:pub.10.1007/jhep06(2014)059
    17 sg:pub.10.1007/jhep08(2012)034
    18 sg:pub.10.1007/jhep08(2015)027
    19 sg:pub.10.1007/jhep08(2015)071
    20 sg:pub.10.1007/jhep09(2010)063
    21 sg:pub.10.1007/jhep09(2014)178
    22 sg:pub.10.1007/jhep09(2014)185
    23 sg:pub.10.1007/jhep10(2010)013
    24 sg:pub.10.1007/jhep10(2012)190
    25 sg:pub.10.1007/jhep10(2013)086
    26 sg:pub.10.1007/jhep10(2014)099
    27 sg:pub.10.1007/jhep10(2014)117
    28 sg:pub.10.1007/jhep12(2014)103
    29 sg:pub.10.1007/s00220-012-1607-8
    30 sg:pub.10.1088/1126-6708/1998/12/015
    31 sg:pub.10.1088/1126-6708/2009/09/052
    32 schema:datePublished 2017-09-15
    33 schema:datePublishedReg 2017-09-15
    34 schema:description We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine BN quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine BN quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine BN quiver.
    35 schema:genre article
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N2e8305b856804155a3566d0ae1d3d503
    38 Neaa3b69d2e6b40c3b839e7da567ef2cc
    39 sg:journal.1052482
    40 schema:keywords BN
    41 Chern-Simons coupling
    42 Chern-Simons term
    43 Lagrangian
    44 S-duality
    45 addition
    46 collection
    47 correspondence
    48 coupling
    49 formula
    50 function
    51 gauge theory
    52 global symmetry
    53 index
    54 instantons
    55 mirror symmetry
    56 partition function
    57 quiver gauge theories
    58 quivers
    59 sphere
    60 superconformal index
    61 supersymmetric partition functions
    62 supersymmetric quiver gauge theories
    63 symmetry
    64 terms
    65 theory
    66 three-dimensional mirror symmetry
    67 three-dimensional quiver gauge theories
    68 transformation
    69 type B
    70 schema:name On three-dimensional quiver gauge theories of type B
    71 schema:pagination 67
    72 schema:productId N3fde3ec30c88410da1593d2036213bf5
    73 N7217a3ceacb1483facc6ef03cad7b93b
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091817147
    75 https://doi.org/10.1007/jhep09(2017)067
    76 schema:sdDatePublished 2022-09-02T16:00
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N95639144d55f40458d1fa853dfe7228e
    79 schema:url https://doi.org/10.1007/jhep09(2017)067
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N2e8305b856804155a3566d0ae1d3d503 schema:issueNumber 9
    84 rdf:type schema:PublicationIssue
    85 N3fde3ec30c88410da1593d2036213bf5 schema:name doi
    86 schema:value 10.1007/jhep09(2017)067
    87 rdf:type schema:PropertyValue
    88 N7217a3ceacb1483facc6ef03cad7b93b schema:name dimensions_id
    89 schema:value pub.1091817147
    90 rdf:type schema:PropertyValue
    91 N755421fd24a14acda0f59142967c4130 rdf:first sg:person.014662114762.32
    92 rdf:rest rdf:nil
    93 N7d50c4487a9045d1bcb0a7d3c955e53a rdf:first sg:person.07543351155.94
    94 rdf:rest Na78ce8405e8e48889c95017f9913c759
    95 N95639144d55f40458d1fa853dfe7228e schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Na78ce8405e8e48889c95017f9913c759 rdf:first sg:person.012155553275.80
    98 rdf:rest Nefa447537103410d81708f2aab668824
    99 Neaa3b69d2e6b40c3b839e7da567ef2cc schema:volumeNumber 2017
    100 rdf:type schema:PublicationVolume
    101 Nefa447537103410d81708f2aab668824 rdf:first sg:person.011504353136.21
    102 rdf:rest N755421fd24a14acda0f59142967c4130
    103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Mathematical Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Pure Mathematics
    108 rdf:type schema:DefinedTerm
    109 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2017)067
    110 rdf:type schema:MonetaryGrant
    111 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2017)067
    112 rdf:type schema:MonetaryGrant
    113 sg:grant.3938182 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2017)067
    114 rdf:type schema:MonetaryGrant
    115 sg:journal.1052482 schema:issn 1029-8479
    116 1126-6708
    117 schema:name Journal of High Energy Physics
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.011504353136.21 schema:affiliation grid-institutes:grid.27860.3b
    121 schema:familyName Koroteev
    122 schema:givenName Peter
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504353136.21
    124 rdf:type schema:Person
    125 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    126 schema:familyName Hanany
    127 schema:givenName Amihay
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    129 rdf:type schema:Person
    130 sg:person.014662114762.32 schema:affiliation grid-institutes:grid.470207.6
    131 schema:familyName Mekareeya
    132 schema:givenName Noppadol
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32
    134 rdf:type schema:Person
    135 sg:person.07543351155.94 schema:affiliation grid-institutes:grid.430387.b
    136 schema:familyName Dey
    137 schema:givenName Anindya
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543351155.94
    139 rdf:type schema:Person
    140 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    141 https://doi.org/10.1007/jhep01(2013)070
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    144 https://doi.org/10.1007/jhep01(2014)005
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep03(2010)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358077
    147 https://doi.org/10.1007/jhep03(2010)089
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep04(2011)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027488820
    150 https://doi.org/10.1007/jhep04(2011)007
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep04(2012)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032157862
    153 https://doi.org/10.1007/jhep04(2012)051
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep05(2011)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742519
    156 https://doi.org/10.1007/jhep05(2011)014
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep05(2012)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023665909
    159 https://doi.org/10.1007/jhep05(2012)099
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    162 https://doi.org/10.1007/jhep05(2012)145
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep05(2013)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043871977
    165 https://doi.org/10.1007/jhep05(2013)126
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep05(2015)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632922
    168 https://doi.org/10.1007/jhep05(2015)004
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    171 https://doi.org/10.1007/jhep06(2010)100
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep06(2011)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015999099
    174 https://doi.org/10.1007/jhep06(2011)008
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep06(2014)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069294
    177 https://doi.org/10.1007/jhep06(2014)059
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    180 https://doi.org/10.1007/jhep08(2012)034
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep08(2015)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460191
    183 https://doi.org/10.1007/jhep08(2015)027
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep08(2015)071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039531876
    186 https://doi.org/10.1007/jhep08(2015)071
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    189 https://doi.org/10.1007/jhep09(2010)063
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    192 https://doi.org/10.1007/jhep09(2014)178
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    195 https://doi.org/10.1007/jhep09(2014)185
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep10(2010)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018065582
    198 https://doi.org/10.1007/jhep10(2010)013
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep10(2012)190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026075445
    201 https://doi.org/10.1007/jhep10(2012)190
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/jhep10(2013)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024132084
    204 https://doi.org/10.1007/jhep10(2013)086
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/jhep10(2014)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019666118
    207 https://doi.org/10.1007/jhep10(2014)099
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/jhep10(2014)117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003229445
    210 https://doi.org/10.1007/jhep10(2014)117
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    213 https://doi.org/10.1007/jhep12(2014)103
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    216 https://doi.org/10.1007/s00220-012-1607-8
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1088/1126-6708/1998/12/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027763459
    219 https://doi.org/10.1088/1126-6708/1998/12/015
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    222 https://doi.org/10.1088/1126-6708/2009/09/052
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.27860.3b schema:alternateName Department of Mathematics, University of California, Davis, CA, U.S.A.
    225 schema:name Department of Mathematics, University of California, Davis, CA, U.S.A.
    226 Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada
    227 rdf:type schema:Organization
    228 grid-institutes:grid.430387.b schema:alternateName New High Energy Theory Center, Rutgers University, Piscataway, NJ, U.S.A.
    229 schema:name New High Energy Theory Center, Rutgers University, Piscataway, NJ, U.S.A.
    230 rdf:type schema:Organization
    231 grid-institutes:grid.470207.6 schema:alternateName INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy
    232 schema:name Dipartimento di Fisica, UniversitĂ  di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy
    233 INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy
    234 rdf:type schema:Organization
    235 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, London, U.K.
    236 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, London, U.K.
    237 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...