Notes on S-folds and N = 3 theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-06

AUTHORS

Prarit Agarwal, Antonio Amariti

ABSTRACT

We consider D3 branes in presence of an S-fold plane. The latter is a non-perturbative object, arising from the combined projection of an S-duality twist and a discrete orbifold of the R-symmetry group. This construction naively gives rise to 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 SCFTs. Nevertheless it has been observed that in some cases supersymmetry is enhanced to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4. In this paper we study the explicit counting of degrees of freedom arising from vector multiplets associated to strings suspended between the D3 branes probing the S-fold. We propose that, for trivial discrete torsion, there is no vector multiplet associated to (1, 0) strings stretched between a brane and its image. We then focus on the case of rank 2 N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 theory that enhances to SU(3) N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM, explicitly spelling out the isomorphism between the BPS-spectrum of the manifestly N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 theory and that of three D3 branes in flat spacetime. Subsequently, we consider 3-pronged strings in these setups and show how wall-crossing in the S-fold background implies wall crossing in the flat geometry. This can be considered a consistency check of the conjectured SUSY enhancement. We also find that the above isomorphism implies that a (1, 0) string, suspended between a brane and its image in the S-fold, corresponds to a 3-string junction in the flat geometry. This is in agreement with our claim on the absence of a vector multiplet associated to such (1, 0) strings. This is because the 3-string junction in flat geometry gives rise to a 1/4-th BPS multiplet of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 algebra. Such multiplets always include particles with spin > 1 as opposed to a vector multiplet which is restricted by the requirement that the spins must be ≤ 1. More... »

PAGES

32

References to SciGraph publications

  • 2016-03-14. N=3 four dimensional field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-10. F-theory and N = 1 SCFTs in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-08. S-folds and 4d N = 3 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-05-16. Expanding the landscape of N = 2 rank 1 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. AdS5 backgrounds with 24 supersymmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-10-21. A geometry for non-geometric string backgrounds in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-02. N=6 Supergravity on Ad S5 and the SU(2,2/3) Superconformal Correspondence in LETTERS IN MATHEMATICAL PHYSICS
  • 2016-04-07. On four dimensional N = 3 superconformal theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-07-14. Baryons and branes in anti de Sitter space in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2016)032

    DOI

    http://dx.doi.org/10.1007/jhep09(2016)032

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021944372


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Physics, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agarwal", 
            "givenName": "Prarit", 
            "id": "sg:person.011336674601.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physics Department, The City College of the CUNY, 160 Convent Avenue, 10031, New York, NY, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.254250.4", 
              "name": [
                "Physics Department, The City College of the CUNY, 160 Convent Avenue, 10031, New York, NY, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amariti", 
            "givenName": "Antonio", 
            "id": "sg:person.014743204225.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743204225.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/1998/07/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017981757", 
              "https://doi.org/10.1088/1126-6708/1998/07/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015642179", 
              "https://doi.org/10.1007/jhep06(2016)044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035462635", 
              "https://doi.org/10.1007/jhep06(2016)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2016)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003538586", 
              "https://doi.org/10.1007/jhep05(2016)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007592711262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002370503", 
              "https://doi.org/10.1023/a:1007592711262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/10/065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024677026", 
              "https://doi.org/10.1088/1126-6708/2005/10/065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053302058", 
              "https://doi.org/10.1007/jhep03(2016)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023867736", 
              "https://doi.org/10.1007/jhep04(2016)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048572212", 
              "https://doi.org/10.1007/jhep08(2016)070"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-06", 
        "datePublishedReg": "2016-09-06", 
        "description": "We consider D3 branes in presence of an S-fold plane. The latter is a non-perturbative object, arising from the combined projection of an S-duality twist and a discrete orbifold of the R-symmetry group. This construction naively gives rise to 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 3 SCFTs. Nevertheless it has been observed that in some cases supersymmetry is enhanced to N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4. In this paper we study the explicit counting of degrees of freedom arising from vector multiplets associated to strings suspended between the D3 branes probing the S-fold. We propose that, for trivial discrete torsion, there is no vector multiplet associated to (1, 0) strings stretched between a brane and its image. We then focus on the case of rank 2 N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 3 theory that enhances to SU(3) N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 SYM, explicitly spelling out the isomorphism between the BPS-spectrum of the manifestly N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 3 theory and that of three D3 branes in flat spacetime. Subsequently, we consider 3-pronged strings in these setups and show how wall-crossing in the S-fold background implies wall crossing in the flat geometry. This can be considered a consistency check of the conjectured SUSY enhancement. We also find that the above isomorphism implies that a (1, 0) string, suspended between a brane and its image in the S-fold, corresponds to a 3-string junction in the flat geometry. This is in agreement with our claim on the absence of a vector multiplet associated to such (1, 0) strings. This is because the 3-string junction in flat geometry gives rise to a 1/4-th BPS multiplet of the N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 algebra. Such multiplets always include particles with spin > 1 as opposed to a vector multiplet which is restricted by the requirement that the spins must be \u2264 1.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2016)032", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "D3-branes", 
          "vector multiplets", 
          "brane", 
          "non-perturbative objects", 
          "R-symmetry group", 
          "case supersymmetry", 
          "explicit counting", 
          "S-folds", 
          "discrete torsion", 
          "rank 2", 
          "BPS spectrum", 
          "flat spacetime", 
          "wall-crossing", 
          "fold backgrounds", 
          "flat geometry", 
          "SUSY enhancement", 
          "above isomorphism", 
          "such strings", 
          "BPS multiplets", 
          "such multiplets", 
          "orbifolds", 
          "SCFTs", 
          "supersymmetry", 
          "multiplets", 
          "string", 
          "theory", 
          "SYM", 
          "isomorphism", 
          "spacetime", 
          "geometry", 
          "consistency check", 
          "algebra", 
          "spin", 
          "plane", 
          "latter", 
          "objects", 
          "projections", 
          "twist", 
          "construction", 
          "freedom", 
          "torsion", 
          "setup", 
          "junction", 
          "agreement", 
          "particles", 
          "note", 
          "presence", 
          "rise", 
          "counting", 
          "degree", 
          "images", 
          "cases", 
          "background", 
          "wall", 
          "check", 
          "enhancement", 
          "claims", 
          "requirements", 
          "group", 
          "paper", 
          "absence"
        ], 
        "name": "Notes on S-folds and N = 3 theories", 
        "pagination": "32", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021944372"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2016)032"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2016)032", 
          "https://app.dimensions.ai/details/publication/pub.1021944372"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_707.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2016)032"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2016)032'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2016)032'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2016)032'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2016)032'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      94 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2016)032 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0b3ad88b03164c83b9af93e1b61f5aa9
    4 schema:citation sg:pub.10.1007/jhep03(2016)083
    5 sg:pub.10.1007/jhep04(2016)040
    6 sg:pub.10.1007/jhep05(2016)088
    7 sg:pub.10.1007/jhep06(2016)044
    8 sg:pub.10.1007/jhep06(2016)126
    9 sg:pub.10.1007/jhep08(2016)070
    10 sg:pub.10.1023/a:1007592711262
    11 sg:pub.10.1088/1126-6708/1998/07/006
    12 sg:pub.10.1088/1126-6708/2005/10/065
    13 schema:datePublished 2016-09-06
    14 schema:datePublishedReg 2016-09-06
    15 schema:description We consider D3 branes in presence of an S-fold plane. The latter is a non-perturbative object, arising from the combined projection of an S-duality twist and a discrete orbifold of the R-symmetry group. This construction naively gives rise to 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 SCFTs. Nevertheless it has been observed that in some cases supersymmetry is enhanced to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4. In this paper we study the explicit counting of degrees of freedom arising from vector multiplets associated to strings suspended between the D3 branes probing the S-fold. We propose that, for trivial discrete torsion, there is no vector multiplet associated to (1, 0) strings stretched between a brane and its image. We then focus on the case of rank 2 N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 theory that enhances to SU(3) N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM, explicitly spelling out the isomorphism between the BPS-spectrum of the manifestly N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 theory and that of three D3 branes in flat spacetime. Subsequently, we consider 3-pronged strings in these setups and show how wall-crossing in the S-fold background implies wall crossing in the flat geometry. This can be considered a consistency check of the conjectured SUSY enhancement. We also find that the above isomorphism implies that a (1, 0) string, suspended between a brane and its image in the S-fold, corresponds to a 3-string junction in the flat geometry. This is in agreement with our claim on the absence of a vector multiplet associated to such (1, 0) strings. This is because the 3-string junction in flat geometry gives rise to a 1/4-th BPS multiplet of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 algebra. Such multiplets always include particles with spin > 1 as opposed to a vector multiplet which is restricted by the requirement that the spins must be ≤ 1.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N64b92df666224810ad65d54773fa11c3
    19 Nccd298dddc7e426c9c475a2c2581d298
    20 sg:journal.1052482
    21 schema:keywords BPS multiplets
    22 BPS spectrum
    23 D3-branes
    24 R-symmetry group
    25 S-folds
    26 SCFTs
    27 SUSY enhancement
    28 SYM
    29 above isomorphism
    30 absence
    31 agreement
    32 algebra
    33 background
    34 brane
    35 case supersymmetry
    36 cases
    37 check
    38 claims
    39 consistency check
    40 construction
    41 counting
    42 degree
    43 discrete torsion
    44 enhancement
    45 explicit counting
    46 flat geometry
    47 flat spacetime
    48 fold backgrounds
    49 freedom
    50 geometry
    51 group
    52 images
    53 isomorphism
    54 junction
    55 latter
    56 multiplets
    57 non-perturbative objects
    58 note
    59 objects
    60 orbifolds
    61 paper
    62 particles
    63 plane
    64 presence
    65 projections
    66 rank 2
    67 requirements
    68 rise
    69 setup
    70 spacetime
    71 spin
    72 string
    73 such multiplets
    74 such strings
    75 supersymmetry
    76 theory
    77 torsion
    78 twist
    79 vector multiplets
    80 wall
    81 wall-crossing
    82 schema:name Notes on S-folds and N = 3 theories
    83 schema:pagination 32
    84 schema:productId N3737066cf12343f3b03a0f38da85f009
    85 N3f3c94ab4ced469997823dbc7d4ecc77
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021944372
    87 https://doi.org/10.1007/jhep09(2016)032
    88 schema:sdDatePublished 2022-12-01T06:34
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N18ac432310734fee9063811f9f38b325
    91 schema:url https://doi.org/10.1007/jhep09(2016)032
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0b3ad88b03164c83b9af93e1b61f5aa9 rdf:first sg:person.011336674601.46
    96 rdf:rest N17a6a028df154da3a9e02a8c2f076dfd
    97 N17a6a028df154da3a9e02a8c2f076dfd rdf:first sg:person.014743204225.72
    98 rdf:rest rdf:nil
    99 N18ac432310734fee9063811f9f38b325 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N3737066cf12343f3b03a0f38da85f009 schema:name doi
    102 schema:value 10.1007/jhep09(2016)032
    103 rdf:type schema:PropertyValue
    104 N3f3c94ab4ced469997823dbc7d4ecc77 schema:name dimensions_id
    105 schema:value pub.1021944372
    106 rdf:type schema:PropertyValue
    107 N64b92df666224810ad65d54773fa11c3 schema:issueNumber 9
    108 rdf:type schema:PublicationIssue
    109 Nccd298dddc7e426c9c475a2c2581d298 schema:volumeNumber 2016
    110 rdf:type schema:PublicationVolume
    111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Mathematical Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Pure Mathematics
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1052482 schema:issn 1029-8479
    118 1126-6708
    119 schema:name Journal of High Energy Physics
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.011336674601.46 schema:affiliation grid-institutes:grid.31501.36
    123 schema:familyName Agarwal
    124 schema:givenName Prarit
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46
    126 rdf:type schema:Person
    127 sg:person.014743204225.72 schema:affiliation grid-institutes:grid.254250.4
    128 schema:familyName Amariti
    129 schema:givenName Antonio
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743204225.72
    131 rdf:type schema:Person
    132 sg:pub.10.1007/jhep03(2016)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053302058
    133 https://doi.org/10.1007/jhep03(2016)083
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep04(2016)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023867736
    136 https://doi.org/10.1007/jhep04(2016)040
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep05(2016)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003538586
    139 https://doi.org/10.1007/jhep05(2016)088
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep06(2016)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642179
    142 https://doi.org/10.1007/jhep06(2016)044
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep06(2016)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462635
    145 https://doi.org/10.1007/jhep06(2016)126
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep08(2016)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048572212
    148 https://doi.org/10.1007/jhep08(2016)070
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1023/a:1007592711262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002370503
    151 https://doi.org/10.1023/a:1007592711262
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1088/1126-6708/1998/07/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017981757
    154 https://doi.org/10.1088/1126-6708/1998/07/006
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1088/1126-6708/2005/10/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024677026
    157 https://doi.org/10.1088/1126-6708/2005/10/065
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.254250.4 schema:alternateName Physics Department, The City College of the CUNY, 160 Convent Avenue, 10031, New York, NY, U.S.A.
    160 schema:name Physics Department, The City College of the CUNY, 160 Convent Avenue, 10031, New York, NY, U.S.A.
    161 rdf:type schema:Organization
    162 grid-institutes:grid.31501.36 schema:alternateName Department of Physics, Seoul National University, Seoul, South Korea
    163 schema:name Department of Physics, Seoul National University, Seoul, South Korea
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...