Coulomb branch Hilbert series and Hall-Littlewood polynomials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09-30

AUTHORS

Stefano Cremonesi, Amihay Hanany, Noppadol Mekareeya, Alberto Zaffaroni

ABSTRACT

There has been a recent progress in understanding the chiral ring of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal gauge theories by explicitly constructing an exact generating function (Hilbert series) counting BPS operators on the Coulomb branch. In this paper we introduce Coulomb branch Hilbert series in the presence of background magnetic charges for flavor symmetries, which are useful for computing the Hilbert series of more general theories through gluing techniques. We find a simple formula of the Hilbert series with background magnetic charges for Tρ(G) theories in terms of Hall-Littlewood polynomials. Here G is a classical group and ρ is a certain partition related to the dual group of G. The Hilbert series for vanishing background magnetic charges show that Coulomb branches of Tρ(G) theories are complete intersections. We also demonstrate that mirror symmetry maps background magnetic charges to baryonic charges. More... »

PAGES

178

References to SciGraph publications

  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-29. Counting chiral operators in quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-26. Charges of monopole operators in Chern-Simons Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-04. Index for three dimensional superconformal field theories with general R-charge assignments in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-07-24. Mastering the Master Space in LETTERS IN MATHEMATICAL PHYSICS
  • 2007-12-06. Baryonic generating functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-15. Tri-vertices and SU(2)’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-18. Complete intersection moduli spaces in gauge theories in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-29. 2d TQFT structure of the superconformal indices with outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-04. q-Identities and Affinized Projective Varieties¶II. Flag Varieties in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-26. The superconformal index of class theories of type D in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-06-20. Counting BPS baryonic operators in CFTs with Sasaki-Einstein duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-08-04. The master space of 𝒩 = 1 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-06. Superconformal indices of three-dimensional theories related by mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2014)178

    DOI

    http://dx.doi.org/10.1007/jhep09(2014)178

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052177898


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cremonesi", 
            "givenName": "Stefano", 
            "id": "sg:person.012634721705.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634721705.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theory Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Theory Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mekareeya", 
            "givenName": "Noppadol", 
            "id": "sg:person.014662114762.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470207.6", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Milano-Bicocca, I-20126, Milano, Italy", 
                "INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zaffaroni", 
            "givenName": "Alberto", 
            "id": "sg:person.010467526737.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467526737.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2010)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036695386", 
              "https://doi.org/10.1007/jhep01(2010)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/06/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017451670", 
              "https://doi.org/10.1088/1126-6708/2007/06/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004512263", 
              "https://doi.org/10.1007/s002200050795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-008-0255-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007223137", 
              "https://doi.org/10.1007/s11005-008-0255-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022904471", 
              "https://doi.org/10.1088/1126-6708/2007/11/092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/08/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052066191", 
              "https://doi.org/10.1088/1126-6708/2008/08/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033501882", 
              "https://doi.org/10.1007/jhep03(2013)171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041258983", 
              "https://doi.org/10.1007/jhep05(2014)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018393653", 
              "https://doi.org/10.1088/1126-6708/2007/12/022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027488820", 
              "https://doi.org/10.1007/jhep04(2011)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043468416", 
              "https://doi.org/10.1007/jhep01(2012)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015999099", 
              "https://doi.org/10.1007/jhep06(2011)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187336", 
              "https://doi.org/10.1007/jhep02(2011)069"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-30", 
        "datePublishedReg": "2014-09-30", 
        "description": "There has been a recent progress in understanding the chiral ring of 3d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 superconformal gauge theories by explicitly constructing an exact generating function (Hilbert series) counting BPS operators on the Coulomb branch. In this paper we introduce Coulomb branch Hilbert series in the presence of background magnetic charges for flavor symmetries, which are useful for computing the Hilbert series of more general theories through gluing techniques. We find a simple formula of the Hilbert series with background magnetic charges for T\u03c1(G) theories in terms of Hall-Littlewood polynomials. Here G is a classical group and \u03c1 is a certain partition related to the dual group of G. The Hilbert series for vanishing background magnetic charges show that Coulomb branches of T\u03c1(G) theories are complete intersections. We also demonstrate that mirror symmetry maps background magnetic charges to baryonic charges.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2014)178", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2773222", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "keywords": [
          "Coulomb branch Hilbert series", 
          "magnetic charges", 
          "Hilbert series", 
          "Hall\u2013Littlewood polynomials", 
          "Coulomb branch", 
          "exact generating function", 
          "superconformal gauge theories", 
          "more general theories", 
          "classical groups", 
          "generating function", 
          "gauge theory", 
          "chiral ring", 
          "BPS operators", 
          "certain partitions", 
          "general theory", 
          "dual group", 
          "complete intersection", 
          "simple formula", 
          "flavor symmetry", 
          "polynomials", 
          "theory", 
          "symmetry", 
          "operators", 
          "formula", 
          "charge", 
          "recent progress", 
          "branches", 
          "partition", 
          "terms", 
          "function", 
          "intersection", 
          "series", 
          "technique", 
          "ring", 
          "progress", 
          "presence", 
          "group", 
          "paper"
        ], 
        "name": "Coulomb branch Hilbert series and Hall-Littlewood polynomials", 
        "pagination": "178", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052177898"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2014)178"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2014)178", 
          "https://app.dimensions.ai/details/publication/pub.1052177898"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_630.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2014)178"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2014)178'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2014)178'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2014)178'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2014)178'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      85 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2014)178 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf3a01d1027fc4905a3caa790b8d49e2e
    4 schema:citation sg:pub.10.1007/jhep01(2010)110
    5 sg:pub.10.1007/jhep01(2012)079
    6 sg:pub.10.1007/jhep01(2013)070
    7 sg:pub.10.1007/jhep01(2014)005
    8 sg:pub.10.1007/jhep02(2011)069
    9 sg:pub.10.1007/jhep02(2013)110
    10 sg:pub.10.1007/jhep03(2013)171
    11 sg:pub.10.1007/jhep04(2011)007
    12 sg:pub.10.1007/jhep05(2011)015
    13 sg:pub.10.1007/jhep05(2012)145
    14 sg:pub.10.1007/jhep05(2014)120
    15 sg:pub.10.1007/jhep06(2010)100
    16 sg:pub.10.1007/jhep06(2011)008
    17 sg:pub.10.1007/jhep09(2010)063
    18 sg:pub.10.1007/s00220-012-1607-8
    19 sg:pub.10.1007/s002200050795
    20 sg:pub.10.1007/s11005-008-0255-6
    21 sg:pub.10.1088/1126-6708/2000/11/033
    22 sg:pub.10.1088/1126-6708/2002/12/044
    23 sg:pub.10.1088/1126-6708/2007/06/069
    24 sg:pub.10.1088/1126-6708/2007/11/092
    25 sg:pub.10.1088/1126-6708/2007/12/022
    26 sg:pub.10.1088/1126-6708/2008/08/012
    27 schema:datePublished 2014-09-30
    28 schema:datePublishedReg 2014-09-30
    29 schema:description There has been a recent progress in understanding the chiral ring of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal gauge theories by explicitly constructing an exact generating function (Hilbert series) counting BPS operators on the Coulomb branch. In this paper we introduce Coulomb branch Hilbert series in the presence of background magnetic charges for flavor symmetries, which are useful for computing the Hilbert series of more general theories through gluing techniques. We find a simple formula of the Hilbert series with background magnetic charges for Tρ(G) theories in terms of Hall-Littlewood polynomials. Here G is a classical group and ρ is a certain partition related to the dual group of G. The Hilbert series for vanishing background magnetic charges show that Coulomb branches of Tρ(G) theories are complete intersections. We also demonstrate that mirror symmetry maps background magnetic charges to baryonic charges.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N95f740ab990643189ca4da45abca0477
    33 Na5a847148acb4f57ac91f23775c29eac
    34 sg:journal.1052482
    35 schema:keywords BPS operators
    36 Coulomb branch
    37 Coulomb branch Hilbert series
    38 Hall–Littlewood polynomials
    39 Hilbert series
    40 branches
    41 certain partitions
    42 charge
    43 chiral ring
    44 classical groups
    45 complete intersection
    46 dual group
    47 exact generating function
    48 flavor symmetry
    49 formula
    50 function
    51 gauge theory
    52 general theory
    53 generating function
    54 group
    55 intersection
    56 magnetic charges
    57 more general theories
    58 operators
    59 paper
    60 partition
    61 polynomials
    62 presence
    63 progress
    64 recent progress
    65 ring
    66 series
    67 simple formula
    68 superconformal gauge theories
    69 symmetry
    70 technique
    71 terms
    72 theory
    73 schema:name Coulomb branch Hilbert series and Hall-Littlewood polynomials
    74 schema:pagination 178
    75 schema:productId N664237307e084e57801661f913f3b86d
    76 Nb065a740e7d546db8432b6c7427121fa
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    78 https://doi.org/10.1007/jhep09(2014)178
    79 schema:sdDatePublished 2022-12-01T06:32
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N36bd2e24b35648b4a3c1d9f0e3ad1ea8
    82 schema:url https://doi.org/10.1007/jhep09(2014)178
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N36bd2e24b35648b4a3c1d9f0e3ad1ea8 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N4b91236008a34bccac09b00f2163bfd9 rdf:first sg:person.010467526737.44
    89 rdf:rest rdf:nil
    90 N664237307e084e57801661f913f3b86d schema:name doi
    91 schema:value 10.1007/jhep09(2014)178
    92 rdf:type schema:PropertyValue
    93 N95f740ab990643189ca4da45abca0477 schema:volumeNumber 2014
    94 rdf:type schema:PublicationVolume
    95 Na5a847148acb4f57ac91f23775c29eac schema:issueNumber 9
    96 rdf:type schema:PublicationIssue
    97 Nb065a740e7d546db8432b6c7427121fa schema:name dimensions_id
    98 schema:value pub.1052177898
    99 rdf:type schema:PropertyValue
    100 Ncca46ed1d30c46fa8b4dac07aa1eb6d2 rdf:first sg:person.014662114762.32
    101 rdf:rest N4b91236008a34bccac09b00f2163bfd9
    102 Ne6a100883b9d4b56a953dbb3003f7596 rdf:first sg:person.012155553275.80
    103 rdf:rest Ncca46ed1d30c46fa8b4dac07aa1eb6d2
    104 Nf3a01d1027fc4905a3caa790b8d49e2e rdf:first sg:person.012634721705.50
    105 rdf:rest Ne6a100883b9d4b56a953dbb3003f7596
    106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Mathematical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Pure Mathematics
    111 rdf:type schema:DefinedTerm
    112 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2014)178
    113 rdf:type schema:MonetaryGrant
    114 sg:grant.2773222 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2014)178
    115 rdf:type schema:MonetaryGrant
    116 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2014)178
    117 rdf:type schema:MonetaryGrant
    118 sg:journal.1052482 schema:issn 1029-8479
    119 1126-6708
    120 schema:name Journal of High Energy Physics
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.010467526737.44 schema:affiliation grid-institutes:grid.470207.6
    124 schema:familyName Zaffaroni
    125 schema:givenName Alberto
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467526737.44
    127 rdf:type schema:Person
    128 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    129 schema:familyName Hanany
    130 schema:givenName Amihay
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    132 rdf:type schema:Person
    133 sg:person.012634721705.50 schema:affiliation grid-institutes:grid.7445.2
    134 schema:familyName Cremonesi
    135 schema:givenName Stefano
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634721705.50
    137 rdf:type schema:Person
    138 sg:person.014662114762.32 schema:affiliation grid-institutes:grid.9132.9
    139 schema:familyName Mekareeya
    140 schema:givenName Noppadol
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32
    142 rdf:type schema:Person
    143 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
    144 https://doi.org/10.1007/jhep01(2010)110
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
    147 https://doi.org/10.1007/jhep01(2012)079
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    150 https://doi.org/10.1007/jhep01(2013)070
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    153 https://doi.org/10.1007/jhep01(2014)005
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
    156 https://doi.org/10.1007/jhep02(2011)069
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    159 https://doi.org/10.1007/jhep02(2013)110
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep03(2013)171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501882
    162 https://doi.org/10.1007/jhep03(2013)171
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep04(2011)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027488820
    165 https://doi.org/10.1007/jhep04(2011)007
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    168 https://doi.org/10.1007/jhep05(2011)015
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    171 https://doi.org/10.1007/jhep05(2012)145
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep05(2014)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041258983
    174 https://doi.org/10.1007/jhep05(2014)120
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    177 https://doi.org/10.1007/jhep06(2010)100
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep06(2011)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015999099
    180 https://doi.org/10.1007/jhep06(2011)008
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    183 https://doi.org/10.1007/jhep09(2010)063
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    186 https://doi.org/10.1007/s00220-012-1607-8
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s002200050795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004512263
    189 https://doi.org/10.1007/s002200050795
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11005-008-0255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007223137
    192 https://doi.org/10.1007/s11005-008-0255-6
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    195 https://doi.org/10.1088/1126-6708/2000/11/033
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    198 https://doi.org/10.1088/1126-6708/2002/12/044
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1088/1126-6708/2007/06/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017451670
    201 https://doi.org/10.1088/1126-6708/2007/06/069
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1088/1126-6708/2007/11/092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904471
    204 https://doi.org/10.1088/1126-6708/2007/11/092
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1088/1126-6708/2007/12/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018393653
    207 https://doi.org/10.1088/1126-6708/2007/12/022
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1088/1126-6708/2008/08/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052066191
    210 https://doi.org/10.1088/1126-6708/2008/08/012
    211 rdf:type schema:CreativeWork
    212 grid-institutes:grid.470207.6 schema:alternateName INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy
    213 schema:name Dipartimento di Fisica, Università di Milano-Bicocca, I-20126, Milano, Italy
    214 INFN, sezione di Milano-Bicocca, I-20126, Milano, Italy
    215 rdf:type schema:Organization
    216 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    217 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    218 rdf:type schema:Organization
    219 grid-institutes:grid.9132.9 schema:alternateName Theory Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland
    220 schema:name Theory Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...