On the theory of continuous-spin particles: helicity correspondence in radiation and forces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Philip Schuster, Natalia Toro

ABSTRACT

We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale ρ. Here, we demonstrate a helicity correspondence at CSP energies larger than ρ, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, ±1, or ±2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small ρ rather than by helicity 1 and 2 particles. More... »

PAGES

105

References to SciGraph publications

  • 1992. Representation of Lie Groups and Special Functions, Volume 3: Classical and Quantum Groups and Special Functions in NONE
  • 2005-12-01. A direct proof of the CSW rules in JOURNAL OF HIGH ENERGY PHYSICS
  • 1970-09. Zero-mass infinite spin representations of the Poincaré group and quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2006-01-23. The continuous spin limit of higher spin field equations in JOURNAL OF HIGH ENERGY PHYSICS
  • 1948-07. Relativistische Wellengleichungen in ZEITSCHRIFT FÜR PHYSIK
  • 2005-05-03. Infinite spin particles in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2013)105

    DOI

    http://dx.doi.org/10.1007/jhep09(2013)105

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044773999


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schuster", 
            "givenName": "Philip", 
            "id": "sg:person.013416222311.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416222311.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toro", 
            "givenName": "Natalia", 
            "id": "sg:person.013443607033.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443607033.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1001255693", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-2881-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001255693", 
              "https://doi.org/10.1007/978-94-017-2881-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-2881-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001255693", 
              "https://doi.org/10.1007/978-94-017-2881-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.02.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002295203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/05/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002325559", 
              "https://doi.org/10.1088/1126-6708/2005/05/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1923335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007947085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1518138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010241058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.39.6.510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/11/6/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016643702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021591979", 
              "https://doi.org/10.1088/1126-6708/2006/01/115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021591979", 
              "https://doi.org/10.1088/1126-6708/2006/01/115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01649432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030175475", 
              "https://doi.org/10.1007/bf01649432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01649432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030175475", 
              "https://doi.org/10.1007/bf01649432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.34.5.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031506808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.181602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031658844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.181602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031658844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/12/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032081059", 
              "https://doi.org/10.1088/1126-6708/2005/12/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/12/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032081059", 
              "https://doi.org/10.1088/1126-6708/2005/12/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)90212-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038825605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)90212-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038825605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01668901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041267045", 
              "https://doi.org/10.1007/bf01668901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.094020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043286309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.094020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043286309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1897663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048603557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(71)90284-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048963771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1665809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057743888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.134.b882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.134.b882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.b1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.b1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.138.b988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060430851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.138.b988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060430851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.2291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.2291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.18.3624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.18.3624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.2.2326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.2.2326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.58.652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063136823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1968551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069673975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/0097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099057705"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09", 
        "datePublishedReg": "2013-09-01", 
        "description": "We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale \u03c1. Here, we demonstrate a helicity correspondence at CSP energies larger than \u03c1, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, \u00b11, or \u00b12. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small \u03c1 rather than by helicity 1 and 2 particles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep09(2013)105", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "name": "On the theory of continuous-spin particles: helicity correspondence in radiation and forces", 
        "pagination": "105", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d546712110c5fb269b0afb6c7048cb156ff76ed57e84dd67695a613e6a5a6c27"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2013)105"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044773999"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2013)105", 
          "https://app.dimensions.ai/details/publication/pub.1044773999"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000491.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP09(2013)105"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2013)105 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N9e0be02dea474d788c06cb608b1c3f2b
    4 schema:citation sg:pub.10.1007/978-94-017-2881-2
    5 sg:pub.10.1007/bf01649432
    6 sg:pub.10.1007/bf01668901
    7 sg:pub.10.1088/1126-6708/2005/05/002
    8 sg:pub.10.1088/1126-6708/2005/12/003
    9 sg:pub.10.1088/1126-6708/2006/01/115
    10 https://app.dimensions.ai/details/publication/pub.1001255693
    11 https://doi.org/10.1016/0003-4916(71)90284-3
    12 https://doi.org/10.1016/0370-2693(80)90212-9
    13 https://doi.org/10.1016/j.nuclphysb.2005.02.030
    14 https://doi.org/10.1063/1.1518138
    15 https://doi.org/10.1063/1.1665809
    16 https://doi.org/10.1063/1.1897663
    17 https://doi.org/10.1063/1.1923335
    18 https://doi.org/10.1073/pnas.34.5.211
    19 https://doi.org/10.1073/pnas.39.6.510
    20 https://doi.org/10.1088/0264-9381/11/6/007
    21 https://doi.org/10.1103/physrev.134.b882
    22 https://doi.org/10.1103/physrev.135.b1049
    23 https://doi.org/10.1103/physrev.138.b988
    24 https://doi.org/10.1103/physrevd.13.2291
    25 https://doi.org/10.1103/physrevd.18.3624
    26 https://doi.org/10.1103/physrevd.2.2326
    27 https://doi.org/10.1103/physrevd.86.094020
    28 https://doi.org/10.1103/physrevlett.94.181602
    29 https://doi.org/10.1142/0097
    30 https://doi.org/10.1143/ptp.58.652
    31 https://doi.org/10.2307/1968551
    32 https://doi.org/10.2307/1969129
    33 schema:datePublished 2013-09
    34 schema:datePublishedReg 2013-09-01
    35 schema:description We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale ρ. Here, we demonstrate a helicity correspondence at CSP energies larger than ρ, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, ±1, or ±2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small ρ rather than by helicity 1 and 2 particles.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N6d46620af4d04d689332ac811d506728
    40 N88ea2d4ed56e4c039ea3ed029a187e79
    41 sg:journal.1052482
    42 schema:name On the theory of continuous-spin particles: helicity correspondence in radiation and forces
    43 schema:pagination 105
    44 schema:productId N57110a2b60634e35a05366e4a53645ae
    45 N749c1f4b60994f1ea5ce7e10ce551624
    46 Ncaca1b8651284e84991a363bffe1fef1
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044773999
    48 https://doi.org/10.1007/jhep09(2013)105
    49 schema:sdDatePublished 2019-04-10T21:32
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N959d4f86f3594c009404b1bd9660f4e2
    52 schema:url http://link.springer.com/10.1007/JHEP09(2013)105
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N508f034a0acd4681a66d2fc321a859f3 rdf:first sg:person.013443607033.59
    57 rdf:rest rdf:nil
    58 N57110a2b60634e35a05366e4a53645ae schema:name doi
    59 schema:value 10.1007/jhep09(2013)105
    60 rdf:type schema:PropertyValue
    61 N6d46620af4d04d689332ac811d506728 schema:volumeNumber 2013
    62 rdf:type schema:PublicationVolume
    63 N749c1f4b60994f1ea5ce7e10ce551624 schema:name readcube_id
    64 schema:value d546712110c5fb269b0afb6c7048cb156ff76ed57e84dd67695a613e6a5a6c27
    65 rdf:type schema:PropertyValue
    66 N88ea2d4ed56e4c039ea3ed029a187e79 schema:issueNumber 9
    67 rdf:type schema:PublicationIssue
    68 N959d4f86f3594c009404b1bd9660f4e2 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N9e0be02dea474d788c06cb608b1c3f2b rdf:first sg:person.013416222311.49
    71 rdf:rest N508f034a0acd4681a66d2fc321a859f3
    72 Ncaca1b8651284e84991a363bffe1fef1 schema:name dimensions_id
    73 schema:value pub.1044773999
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Chemical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Physical Chemistry (incl. Structural)
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1052482 schema:issn 1029-8479
    82 1126-6708
    83 schema:name Journal of High Energy Physics
    84 rdf:type schema:Periodical
    85 sg:person.013416222311.49 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    86 schema:familyName Schuster
    87 schema:givenName Philip
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416222311.49
    89 rdf:type schema:Person
    90 sg:person.013443607033.59 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    91 schema:familyName Toro
    92 schema:givenName Natalia
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443607033.59
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-94-017-2881-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001255693
    96 https://doi.org/10.1007/978-94-017-2881-2
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01649432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030175475
    99 https://doi.org/10.1007/bf01649432
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01668901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041267045
    102 https://doi.org/10.1007/bf01668901
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1088/1126-6708/2005/05/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002325559
    105 https://doi.org/10.1088/1126-6708/2005/05/002
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1088/1126-6708/2005/12/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032081059
    108 https://doi.org/10.1088/1126-6708/2005/12/003
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1088/1126-6708/2006/01/115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591979
    111 https://doi.org/10.1088/1126-6708/2006/01/115
    112 rdf:type schema:CreativeWork
    113 https://app.dimensions.ai/details/publication/pub.1001255693 schema:CreativeWork
    114 https://doi.org/10.1016/0003-4916(71)90284-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048963771
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0370-2693(80)90212-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038825605
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.nuclphysb.2005.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002295203
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1063/1.1518138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010241058
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1063/1.1665809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743888
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1063/1.1897663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603557
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1063/1.1923335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947085
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1073/pnas.34.5.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506808
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1073/pnas.39.6.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327712
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1088/0264-9381/11/6/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016643702
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrev.134.b882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428815
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrev.135.b1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429121
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrev.138.b988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060430851
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevd.13.2291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683878
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevd.18.3624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686229
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevd.2.2326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687100
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevd.86.094020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043286309
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.94.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658844
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1142/0097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099057705
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1143/ptp.58.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063136823
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.2307/1969129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674525
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    159 schema:name Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...