On the theory of continuous-spin particles: helicity correspondence in radiation and forces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Philip Schuster, Natalia Toro

ABSTRACT

We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale ρ. Here, we demonstrate a helicity correspondence at CSP energies larger than ρ, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, ±1, or ±2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small ρ rather than by helicity 1 and 2 particles. More... »

PAGES

105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep09(2013)105

DOI

http://dx.doi.org/10.1007/jhep09(2013)105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044773999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster", 
        "givenName": "Philip", 
        "id": "sg:person.013416222311.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416222311.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toro", 
        "givenName": "Natalia", 
        "id": "sg:person.013443607033.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443607033.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1001255693", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2881-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001255693", 
          "https://doi.org/10.1007/978-94-017-2881-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2881-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001255693", 
          "https://doi.org/10.1007/978-94-017-2881-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2005.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002295203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2005/05/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002325559", 
          "https://doi.org/10.1088/1126-6708/2005/05/002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1923335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1518138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010241058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.39.6.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/11/6/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016643702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021591979", 
          "https://doi.org/10.1088/1126-6708/2006/01/115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021591979", 
          "https://doi.org/10.1088/1126-6708/2006/01/115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01649432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030175475", 
          "https://doi.org/10.1007/bf01649432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01649432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030175475", 
          "https://doi.org/10.1007/bf01649432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.34.5.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031506808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2005/12/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032081059", 
          "https://doi.org/10.1088/1126-6708/2005/12/003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2005/12/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032081059", 
          "https://doi.org/10.1088/1126-6708/2005/12/003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)90212-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038825605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)90212-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038825605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01668901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041267045", 
          "https://doi.org/10.1007/bf01668901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.094020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043286309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.094020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043286309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1897663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048603557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(71)90284-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048963771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.b882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.134.b882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.135.b1049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.135.b1049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.138.b988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.138.b988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.3624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.3624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.2.2326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.2.2326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.58.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063136823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/0097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099057705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale \u03c1. Here, we demonstrate a helicity correspondence at CSP energies larger than \u03c1, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, \u00b11, or \u00b12. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small \u03c1 rather than by helicity 1 and 2 particles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep09(2013)105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "On the theory of continuous-spin particles: helicity correspondence in radiation and forces", 
    "pagination": "105", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d546712110c5fb269b0afb6c7048cb156ff76ed57e84dd67695a613e6a5a6c27"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep09(2013)105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044773999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep09(2013)105", 
      "https://app.dimensions.ai/details/publication/pub.1044773999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP09(2013)105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2013)105'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep09(2013)105 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne4da4a64e7c04d0cbbcf017a3dca907d
4 schema:citation sg:pub.10.1007/978-94-017-2881-2
5 sg:pub.10.1007/bf01649432
6 sg:pub.10.1007/bf01668901
7 sg:pub.10.1088/1126-6708/2005/05/002
8 sg:pub.10.1088/1126-6708/2005/12/003
9 sg:pub.10.1088/1126-6708/2006/01/115
10 https://app.dimensions.ai/details/publication/pub.1001255693
11 https://doi.org/10.1016/0003-4916(71)90284-3
12 https://doi.org/10.1016/0370-2693(80)90212-9
13 https://doi.org/10.1016/j.nuclphysb.2005.02.030
14 https://doi.org/10.1063/1.1518138
15 https://doi.org/10.1063/1.1665809
16 https://doi.org/10.1063/1.1897663
17 https://doi.org/10.1063/1.1923335
18 https://doi.org/10.1073/pnas.34.5.211
19 https://doi.org/10.1073/pnas.39.6.510
20 https://doi.org/10.1088/0264-9381/11/6/007
21 https://doi.org/10.1103/physrev.134.b882
22 https://doi.org/10.1103/physrev.135.b1049
23 https://doi.org/10.1103/physrev.138.b988
24 https://doi.org/10.1103/physrevd.13.2291
25 https://doi.org/10.1103/physrevd.18.3624
26 https://doi.org/10.1103/physrevd.2.2326
27 https://doi.org/10.1103/physrevd.86.094020
28 https://doi.org/10.1103/physrevlett.94.181602
29 https://doi.org/10.1142/0097
30 https://doi.org/10.1143/ptp.58.652
31 https://doi.org/10.2307/1968551
32 https://doi.org/10.2307/1969129
33 schema:datePublished 2013-09
34 schema:datePublishedReg 2013-09-01
35 schema:description We have recently shown that continuous-spin particles (CSPs) have covariant single-emission amplitudes with the requisite properties to mediate long-range forces. CSPs, the most general massless particle type consistent with Lorentz symmetry, are characterized by a scale ρ. Here, we demonstrate a helicity correspondence at CSP energies larger than ρ, in which these amplitudes are well approximated by the familiar ones for particles of helicity 0, ±1, or ±2. These properties follow from Lorentz invariance. We also construct tree-level multi-emission and CSP-exchange amplitudes that are unitary, appropriately analytic, and consistent with helicity-0 correspondence. We propose sewing rules from which these amplitudes and others can be obtained. We also exhibit a candidate CSP-graviton matrix element, which shows that the Weinberg-Witten theorem does not apply to CSPs. These results raise the surprising possibility that the known long-range forces might be mediated by CSPs with very small ρ rather than by helicity 1 and 2 particles.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N7322b9787487470fb0110279721b1844
40 N9628a306ef804f9390ef33844f68efb5
41 sg:journal.1052482
42 schema:name On the theory of continuous-spin particles: helicity correspondence in radiation and forces
43 schema:pagination 105
44 schema:productId Nbe0cca21e4c44018aea9a76db693f19d
45 Nc5af78a1a9f04d03b1bd109c29dc9278
46 Nf4b90fc67d8c40d18d8be416af56bee8
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044773999
48 https://doi.org/10.1007/jhep09(2013)105
49 schema:sdDatePublished 2019-04-10T21:32
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N2e4a4ed460c146589c80a639884384b2
52 schema:url http://link.springer.com/10.1007/JHEP09(2013)105
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2e4a4ed460c146589c80a639884384b2 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N4afeba26e8a74dc4b8a281743786de5b rdf:first sg:person.013443607033.59
59 rdf:rest rdf:nil
60 N7322b9787487470fb0110279721b1844 schema:issueNumber 9
61 rdf:type schema:PublicationIssue
62 N9628a306ef804f9390ef33844f68efb5 schema:volumeNumber 2013
63 rdf:type schema:PublicationVolume
64 Nbe0cca21e4c44018aea9a76db693f19d schema:name readcube_id
65 schema:value d546712110c5fb269b0afb6c7048cb156ff76ed57e84dd67695a613e6a5a6c27
66 rdf:type schema:PropertyValue
67 Nc5af78a1a9f04d03b1bd109c29dc9278 schema:name dimensions_id
68 schema:value pub.1044773999
69 rdf:type schema:PropertyValue
70 Ne4da4a64e7c04d0cbbcf017a3dca907d rdf:first sg:person.013416222311.49
71 rdf:rest N4afeba26e8a74dc4b8a281743786de5b
72 Nf4b90fc67d8c40d18d8be416af56bee8 schema:name doi
73 schema:value 10.1007/jhep09(2013)105
74 rdf:type schema:PropertyValue
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Chemistry (incl. Structural)
80 rdf:type schema:DefinedTerm
81 sg:journal.1052482 schema:issn 1029-8479
82 1126-6708
83 schema:name Journal of High Energy Physics
84 rdf:type schema:Periodical
85 sg:person.013416222311.49 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
86 schema:familyName Schuster
87 schema:givenName Philip
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416222311.49
89 rdf:type schema:Person
90 sg:person.013443607033.59 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
91 schema:familyName Toro
92 schema:givenName Natalia
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443607033.59
94 rdf:type schema:Person
95 sg:pub.10.1007/978-94-017-2881-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001255693
96 https://doi.org/10.1007/978-94-017-2881-2
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01649432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030175475
99 https://doi.org/10.1007/bf01649432
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01668901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041267045
102 https://doi.org/10.1007/bf01668901
103 rdf:type schema:CreativeWork
104 sg:pub.10.1088/1126-6708/2005/05/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002325559
105 https://doi.org/10.1088/1126-6708/2005/05/002
106 rdf:type schema:CreativeWork
107 sg:pub.10.1088/1126-6708/2005/12/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032081059
108 https://doi.org/10.1088/1126-6708/2005/12/003
109 rdf:type schema:CreativeWork
110 sg:pub.10.1088/1126-6708/2006/01/115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591979
111 https://doi.org/10.1088/1126-6708/2006/01/115
112 rdf:type schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1001255693 schema:CreativeWork
114 https://doi.org/10.1016/0003-4916(71)90284-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048963771
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0370-2693(80)90212-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038825605
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.nuclphysb.2005.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002295203
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1518138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010241058
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1665809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743888
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.1897663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603557
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.1923335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947085
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1073/pnas.34.5.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506808
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1073/pnas.39.6.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327712
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0264-9381/11/6/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016643702
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrev.134.b882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428815
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrev.135.b1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429121
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrev.138.b988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060430851
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevd.13.2291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683878
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevd.18.3624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686229
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevd.2.2326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687100
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevd.86.094020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043286309
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.94.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658844
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1142/0097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099057705
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1143/ptp.58.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063136823
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2307/1969129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674525
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
159 schema:name Perimeter Institute for Theoretical Physics, N2L 2Y5, Ontario, Canada
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...