Network and Seiberg duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Dan Xie, Masahito Yamazaki

ABSTRACT

We define and study a new class of 4d superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories. More... »

PAGES

36

References to SciGraph publications

  • 2007-10. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-10. Quivers with potentials and their representations I: Mutations in SELECTA MATHEMATICA
  • 2012-08. Brane tilings and specular duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-01-19. Brane dimers and quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-06. Moduli spaces of local systems and higher Teichmüller theory in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2010-03. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-10-05. Quivers, tilings, branes and rhombi in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-03. Toric duality is Seiberg duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-10. Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-08. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\text{SL}}\left( {2,\mathbb{R}} \right) $\end{document} Chern-Simons, Liouville, and gauge theory on duality walls in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09. Relation between the 4d superconformal index and the S3 partition function in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05. Quivers, YBE and 3-manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09. Cluster algebras and triangulated surfaces. Part I: Cluster complexes in ACTA MATHEMATICA
  • 2006-01-23. Gauge theories from toric geometry and brane tilings in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2012)036

    DOI

    http://dx.doi.org/10.1007/jhep09(2012)036

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038701666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Dan", 
            "id": "sg:person.014441531117.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Princeton University", 
              "id": "https://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamazaki", 
            "givenName": "Masahito", 
            "id": "sg:person.012735326423.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)80030-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000672730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006061897", 
              "https://doi.org/10.1088/1126-6708/2006/01/128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006061897", 
              "https://doi.org/10.1088/1126-6708/2006/01/128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2006.03.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011263717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2011.10.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021527150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/10/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023478259", 
              "https://doi.org/10.1088/1126-6708/2007/10/029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023481793", 
              "https://doi.org/10.1007/jhep09(2011)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025337838", 
              "https://doi.org/10.1007/jhep08(2012)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prop.200810536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030730837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00029-008-0057-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032322547", 
              "https://doi.org/10.1007/s00029-008-0057-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.241602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037724162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.241602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037724162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10240-006-0039-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039798950", 
              "https://doi.org/10.1007/s10240-006-0039-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1071-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040539415", 
              "https://doi.org/10.1007/s00220-010-1071-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1071-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040539415", 
              "https://doi.org/10.1007/s00220-010-1071-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040554299", 
              "https://doi.org/10.1088/1126-6708/2001/12/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.091602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042061717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.091602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042061717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)00023-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042221080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042410190", 
              "https://doi.org/10.1088/1126-6708/2006/01/096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042410190", 
              "https://doi.org/10.1088/1126-6708/2006/01/096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043250781", 
              "https://doi.org/10.1007/jhep05(2012)147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046909813", 
              "https://doi.org/10.1007/jhep08(2011)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-01-00385-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047819331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(96)01088-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049623391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2011.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049838449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2009.11.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051005057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11511-008-0030-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052460027", 
              "https://doi.org/10.1007/s11511-008-0030-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x07036877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062924997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.117.923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063129005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2008.v12.n3.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457223"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09", 
        "datePublishedReg": "2012-09-01", 
        "description": "We define and study a new class of 4d superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep09(2012)036", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2012"
          }
        ], 
        "name": "Network and Seiberg duality", 
        "pagination": "36", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b85bce430cc6ef5ac2a0cd178681953fc80889814f0f2a71868da02ff50ec59b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2012)036"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038701666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2012)036", 
          "https://app.dimensions.ai/details/publication/pub.1038701666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP09(2012)036"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2012)036 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6165417eaef94f13a2fc33b0d121ea4f
    4 schema:citation sg:pub.10.1007/jhep03(2010)032
    5 sg:pub.10.1007/jhep05(2012)147
    6 sg:pub.10.1007/jhep08(2011)135
    7 sg:pub.10.1007/jhep08(2012)034
    8 sg:pub.10.1007/jhep08(2012)107
    9 sg:pub.10.1007/jhep09(2011)133
    10 sg:pub.10.1007/s00029-008-0057-9
    11 sg:pub.10.1007/s00220-007-0258-7
    12 sg:pub.10.1007/s00220-010-1071-2
    13 sg:pub.10.1007/s10240-006-0039-4
    14 sg:pub.10.1007/s11511-008-0030-7
    15 sg:pub.10.1088/1126-6708/2001/12/001
    16 sg:pub.10.1088/1126-6708/2006/01/096
    17 sg:pub.10.1088/1126-6708/2006/01/128
    18 sg:pub.10.1088/1126-6708/2007/10/029
    19 https://doi.org/10.1002/prop.200810536
    20 https://doi.org/10.1016/0370-2693(96)01088-x
    21 https://doi.org/10.1016/0550-3213(94)00023-8
    22 https://doi.org/10.1016/j.nuclphysb.2006.03.037
    23 https://doi.org/10.1016/j.nuclphysb.2009.11.022
    24 https://doi.org/10.1016/j.nuclphysb.2011.10.032
    25 https://doi.org/10.1016/j.physletb.2011.09.007
    26 https://doi.org/10.1016/s0550-3213(97)80030-2
    27 https://doi.org/10.1090/s0894-0347-01-00385-x
    28 https://doi.org/10.1103/physrevlett.106.241602
    29 https://doi.org/10.1103/physrevlett.109.091602
    30 https://doi.org/10.1142/s0217751x07036877
    31 https://doi.org/10.1143/ptp.117.923
    32 https://doi.org/10.4310/atmp.2008.v12.n3.a2
    33 schema:datePublished 2012-09
    34 schema:datePublishedReg 2012-09-01
    35 schema:description We define and study a new class of 4d superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf Nbd433dde98dd445689a97708c5fb3f6e
    40 Ncc484084a5894f7490ff93175944ad84
    41 sg:journal.1052482
    42 schema:name Network and Seiberg duality
    43 schema:pagination 36
    44 schema:productId N1157de8b97ca49e2a5a5b046704f6209
    45 Nb61cccce03184ce899c3c3089f1e9bbb
    46 Nfecad9d44d4648e58d8eb0aac401e570
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038701666
    48 https://doi.org/10.1007/jhep09(2012)036
    49 schema:sdDatePublished 2019-04-10T14:04
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Ndc0c16ec77734e7291fc4181a5b231f9
    52 schema:url http://link.springer.com/10.1007/JHEP09(2012)036
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N1157de8b97ca49e2a5a5b046704f6209 schema:name doi
    57 schema:value 10.1007/jhep09(2012)036
    58 rdf:type schema:PropertyValue
    59 N427abc32d226412fb008438431e627cc rdf:first sg:person.012735326423.30
    60 rdf:rest rdf:nil
    61 N6165417eaef94f13a2fc33b0d121ea4f rdf:first sg:person.014441531117.02
    62 rdf:rest N427abc32d226412fb008438431e627cc
    63 Nb61cccce03184ce899c3c3089f1e9bbb schema:name dimensions_id
    64 schema:value pub.1038701666
    65 rdf:type schema:PropertyValue
    66 Nbd433dde98dd445689a97708c5fb3f6e schema:volumeNumber 2012
    67 rdf:type schema:PublicationVolume
    68 Ncc484084a5894f7490ff93175944ad84 schema:issueNumber 9
    69 rdf:type schema:PublicationIssue
    70 Ndc0c16ec77734e7291fc4181a5b231f9 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nfecad9d44d4648e58d8eb0aac401e570 schema:name readcube_id
    73 schema:value b85bce430cc6ef5ac2a0cd178681953fc80889814f0f2a71868da02ff50ec59b
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1052482 schema:issn 1029-8479
    82 1126-6708
    83 schema:name Journal of High Energy Physics
    84 rdf:type schema:Periodical
    85 sg:person.012735326423.30 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
    86 schema:familyName Yamazaki
    87 schema:givenName Masahito
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30
    89 rdf:type schema:Person
    90 sg:person.014441531117.02 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    91 schema:familyName Xie
    92 schema:givenName Dan
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
    94 rdf:type schema:Person
    95 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    96 https://doi.org/10.1007/jhep03(2010)032
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/jhep05(2012)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043250781
    99 https://doi.org/10.1007/jhep05(2012)147
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/jhep08(2011)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909813
    102 https://doi.org/10.1007/jhep08(2011)135
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    105 https://doi.org/10.1007/jhep08(2012)034
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/jhep08(2012)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025337838
    108 https://doi.org/10.1007/jhep08(2012)107
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/jhep09(2011)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481793
    111 https://doi.org/10.1007/jhep09(2011)133
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00029-008-0057-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032322547
    114 https://doi.org/10.1007/s00029-008-0057-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    117 https://doi.org/10.1007/s00220-007-0258-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00220-010-1071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040539415
    120 https://doi.org/10.1007/s00220-010-1071-2
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10240-006-0039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039798950
    123 https://doi.org/10.1007/s10240-006-0039-4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s11511-008-0030-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052460027
    126 https://doi.org/10.1007/s11511-008-0030-7
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
    129 https://doi.org/10.1088/1126-6708/2001/12/001
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1088/1126-6708/2006/01/096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410190
    132 https://doi.org/10.1088/1126-6708/2006/01/096
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1088/1126-6708/2006/01/128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061897
    135 https://doi.org/10.1088/1126-6708/2006/01/128
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1088/1126-6708/2007/10/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023478259
    138 https://doi.org/10.1088/1126-6708/2007/10/029
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1002/prop.200810536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030730837
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/0370-2693(96)01088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623391
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/0550-3213(94)00023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042221080
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.nuclphysb.2006.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011263717
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.nuclphysb.2009.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051005057
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.nuclphysb.2011.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021527150
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.physletb.2011.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049838449
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/s0550-3213(97)80030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672730
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1090/s0894-0347-01-00385-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047819331
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevlett.106.241602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724162
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevlett.109.091602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042061717
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1142/s0217751x07036877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062924997
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1143/ptp.117.923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063129005
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.4310/atmp.2008.v12.n3.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457223
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
    169 schema:name Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A.
    170 rdf:type schema:Organization
    171 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    172 schema:name Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...