Network and Seiberg duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09-12

AUTHORS

Dan Xie, Masahito Yamazaki

ABSTRACT

We define and study a new class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {1} $\end{document} superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories. More... »

PAGES

36

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-06-06. Quivers with potentials and their representations I: Mutations in SELECTA MATHEMATICA
  • 2012-08-22. Brane tilings and specular duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-28. Relation between the 4d superconformal index and the S3 partition function in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-06. Moduli spaces of local systems and higher Teichmüller theory in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2007-10-05. Quivers, tilings, branes and rhombi in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-03. Toric duality is Seiberg duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-29. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\text{SL}}\left( {2,\mathbb{R}} \right) $\end{document} Chern-Simons, Liouville, and gauge theory on duality walls in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-01-19. Brane dimers and quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Quivers, YBE and 3-manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07-01. Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-09. Cluster algebras and triangulated surfaces. Part I: Cluster complexes in ACTA MATHEMATICA
  • 2006-01-23. Gauge theories from toric geometry and brane tilings in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep09(2012)036

    DOI

    http://dx.doi.org/10.1007/jhep09(2012)036

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038701666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Dan", 
            "id": "sg:person.014441531117.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamazaki", 
            "givenName": "Masahito", 
            "id": "sg:person.012735326423.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00220-010-1071-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040539415", 
              "https://doi.org/10.1007/s00220-010-1071-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043250781", 
              "https://doi.org/10.1007/jhep05(2012)147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025337838", 
              "https://doi.org/10.1007/jhep08(2012)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023481793", 
              "https://doi.org/10.1007/jhep09(2011)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042410190", 
              "https://doi.org/10.1088/1126-6708/2006/01/096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00029-008-0057-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032322547", 
              "https://doi.org/10.1007/s00029-008-0057-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/10/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023478259", 
              "https://doi.org/10.1088/1126-6708/2007/10/029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10240-006-0039-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039798950", 
              "https://doi.org/10.1007/s10240-006-0039-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11511-008-0030-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052460027", 
              "https://doi.org/10.1007/s11511-008-0030-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040554299", 
              "https://doi.org/10.1088/1126-6708/2001/12/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046909813", 
              "https://doi.org/10.1007/jhep08(2011)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006061897", 
              "https://doi.org/10.1088/1126-6708/2006/01/128"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09-12", 
        "datePublishedReg": "2012-09-12", 
        "description": "We define and study a new class of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = {1} $\\end{document} superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep09(2012)036", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2012"
          }
        ], 
        "keywords": [
          "Riemann surface", 
          "Seiberg duality", 
          "superconformal quiver gauge theories", 
          "quiver gauge theories", 
          "non-negative Grassmannian", 
          "IR SCFT", 
          "gauge theory", 
          "UV descriptions", 
          "R-charge", 
          "Newton polygon", 
          "superconformal index", 
          "geometric data", 
          "bipartite networks", 
          "duality", 
          "theory", 
          "SCFTs", 
          "Grassmannian", 
          "new class", 
          "torus", 
          "network", 
          "permutations", 
          "polygons", 
          "class", 
          "description", 
          "planar", 
          "point", 
          "surface", 
          "data", 
          "IR", 
          "index", 
          "cells", 
          "story"
        ], 
        "name": "Network and Seiberg duality", 
        "pagination": "36", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038701666"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep09(2012)036"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep09(2012)036", 
          "https://app.dimensions.ai/details/publication/pub.1038701666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_577.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep09(2012)036"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      71 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep09(2012)036 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N599c6acdd16a4e15b51fb7e3c5bd225b
    4 schema:citation sg:pub.10.1007/jhep03(2010)032
    5 sg:pub.10.1007/jhep05(2012)147
    6 sg:pub.10.1007/jhep08(2011)135
    7 sg:pub.10.1007/jhep08(2012)034
    8 sg:pub.10.1007/jhep08(2012)107
    9 sg:pub.10.1007/jhep09(2011)133
    10 sg:pub.10.1007/s00029-008-0057-9
    11 sg:pub.10.1007/s00220-007-0258-7
    12 sg:pub.10.1007/s00220-010-1071-2
    13 sg:pub.10.1007/s10240-006-0039-4
    14 sg:pub.10.1007/s11511-008-0030-7
    15 sg:pub.10.1088/1126-6708/2001/12/001
    16 sg:pub.10.1088/1126-6708/2006/01/096
    17 sg:pub.10.1088/1126-6708/2006/01/128
    18 sg:pub.10.1088/1126-6708/2007/10/029
    19 schema:datePublished 2012-09-12
    20 schema:datePublishedReg 2012-09-12
    21 schema:description We define and study a new class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {1} $\end{document} superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N4c757ef4a27141caa9b5885aa99e251e
    25 N8b4dedfa419541c294bc4767b7c6ae33
    26 sg:journal.1052482
    27 schema:keywords Grassmannian
    28 IR
    29 IR SCFT
    30 Newton polygon
    31 R-charge
    32 Riemann surface
    33 SCFTs
    34 Seiberg duality
    35 UV descriptions
    36 bipartite networks
    37 cells
    38 class
    39 data
    40 description
    41 duality
    42 gauge theory
    43 geometric data
    44 index
    45 network
    46 new class
    47 non-negative Grassmannian
    48 permutations
    49 planar
    50 point
    51 polygons
    52 quiver gauge theories
    53 story
    54 superconformal index
    55 superconformal quiver gauge theories
    56 surface
    57 theory
    58 torus
    59 schema:name Network and Seiberg duality
    60 schema:pagination 36
    61 schema:productId N708f112420e34899bbaa339945774e1c
    62 N9890607ee2444dc5b6b114fa2103bd38
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038701666
    64 https://doi.org/10.1007/jhep09(2012)036
    65 schema:sdDatePublished 2022-08-04T17:01
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Naacbe4aec2e84ea2922fedc3bd758876
    68 schema:url https://doi.org/10.1007/jhep09(2012)036
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N4c757ef4a27141caa9b5885aa99e251e schema:volumeNumber 2012
    73 rdf:type schema:PublicationVolume
    74 N599c6acdd16a4e15b51fb7e3c5bd225b rdf:first sg:person.014441531117.02
    75 rdf:rest Nb5c514476a3f44a090ebb25650a22ce1
    76 N708f112420e34899bbaa339945774e1c schema:name doi
    77 schema:value 10.1007/jhep09(2012)036
    78 rdf:type schema:PropertyValue
    79 N8b4dedfa419541c294bc4767b7c6ae33 schema:issueNumber 9
    80 rdf:type schema:PublicationIssue
    81 N9890607ee2444dc5b6b114fa2103bd38 schema:name dimensions_id
    82 schema:value pub.1038701666
    83 rdf:type schema:PropertyValue
    84 Naacbe4aec2e84ea2922fedc3bd758876 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nb5c514476a3f44a090ebb25650a22ce1 rdf:first sg:person.012735326423.30
    87 rdf:rest rdf:nil
    88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Mathematical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Pure Mathematics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1052482 schema:issn 1029-8479
    95 1126-6708
    96 schema:name Journal of High Energy Physics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.012735326423.30 schema:affiliation grid-institutes:grid.16750.35
    100 schema:familyName Yamazaki
    101 schema:givenName Masahito
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30
    103 rdf:type schema:Person
    104 sg:person.014441531117.02 schema:affiliation grid-institutes:grid.78989.37
    105 schema:familyName Xie
    106 schema:givenName Dan
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
    108 rdf:type schema:Person
    109 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    110 https://doi.org/10.1007/jhep03(2010)032
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/jhep05(2012)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043250781
    113 https://doi.org/10.1007/jhep05(2012)147
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/jhep08(2011)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909813
    116 https://doi.org/10.1007/jhep08(2011)135
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    119 https://doi.org/10.1007/jhep08(2012)034
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/jhep08(2012)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025337838
    122 https://doi.org/10.1007/jhep08(2012)107
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/jhep09(2011)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481793
    125 https://doi.org/10.1007/jhep09(2011)133
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00029-008-0057-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032322547
    128 https://doi.org/10.1007/s00029-008-0057-9
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    131 https://doi.org/10.1007/s00220-007-0258-7
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00220-010-1071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040539415
    134 https://doi.org/10.1007/s00220-010-1071-2
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10240-006-0039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039798950
    137 https://doi.org/10.1007/s10240-006-0039-4
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11511-008-0030-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052460027
    140 https://doi.org/10.1007/s11511-008-0030-7
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
    143 https://doi.org/10.1088/1126-6708/2001/12/001
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1088/1126-6708/2006/01/096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410190
    146 https://doi.org/10.1088/1126-6708/2006/01/096
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1088/1126-6708/2006/01/128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061897
    149 https://doi.org/10.1088/1126-6708/2006/01/128
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1088/1126-6708/2007/10/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023478259
    152 https://doi.org/10.1088/1126-6708/2007/10/029
    153 rdf:type schema:CreativeWork
    154 grid-institutes:grid.16750.35 schema:alternateName Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A.
    155 schema:name Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A.
    156 rdf:type schema:Organization
    157 grid-institutes:grid.78989.37 schema:alternateName Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    158 schema:name Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...