2012-09-12
AUTHORS ABSTRACTWe define and study a new class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {1} $\end{document} superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories. More... »
PAGES36
http://scigraph.springernature.com/pub.10.1007/jhep09(2012)036
DOIhttp://dx.doi.org/10.1007/jhep09(2012)036
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038701666
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.78989.37",
"name": [
"Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
],
"type": "Organization"
},
"familyName": "Xie",
"givenName": "Dan",
"id": "sg:person.014441531117.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A.",
"id": "http://www.grid.ac/institutes/grid.16750.35",
"name": [
"Princeton Center for Theoretical Science, Princeton University, 08544, Princeton, NJ, U.S.A."
],
"type": "Organization"
},
"familyName": "Yamazaki",
"givenName": "Masahito",
"id": "sg:person.012735326423.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00220-010-1071-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040539415",
"https://doi.org/10.1007/s00220-010-1071-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2012)147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043250781",
"https://doi.org/10.1007/jhep05(2012)147"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025337838",
"https://doi.org/10.1007/jhep08(2012)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2011)133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023481793",
"https://doi.org/10.1007/jhep09(2011)133"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/01/096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042410190",
"https://doi.org/10.1088/1126-6708/2006/01/096"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00029-008-0057-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032322547",
"https://doi.org/10.1007/s00029-008-0057-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/10/029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023478259",
"https://doi.org/10.1088/1126-6708/2007/10/029"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10240-006-0039-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039798950",
"https://doi.org/10.1007/s10240-006-0039-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2010)032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025314613",
"https://doi.org/10.1007/jhep03(2010)032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11511-008-0030-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052460027",
"https://doi.org/10.1007/s11511-008-0030-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0258-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040519445",
"https://doi.org/10.1007/s00220-007-0258-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2001/12/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040554299",
"https://doi.org/10.1088/1126-6708/2001/12/001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2011)135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046909813",
"https://doi.org/10.1007/jhep08(2011)135"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/01/128",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006061897",
"https://doi.org/10.1088/1126-6708/2006/01/128"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-09-12",
"datePublishedReg": "2012-09-12",
"description": "We define and study a new class of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = {1} $\\end{document} superconformal quiver gauge theories associated with a planar bipartite network. While UV description is not unique due to Seiberg duality, we can classify the IR fixed points of the theory by a permutation, or equivalently a cell of the totally non-negative Grassmannian. The story is similar to a bipartite network on the torus classified by a Newton polygon. We then generalize the network to a general bordered Riemann surface and define IR SCFT from the geometric data of a Riemann surface. We also comment on IR R-charges and superconformal indices of our theories.",
"genre": "article",
"id": "sg:pub.10.1007/jhep09(2012)036",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2012"
}
],
"keywords": [
"Riemann surface",
"Seiberg duality",
"superconformal quiver gauge theories",
"quiver gauge theories",
"non-negative Grassmannian",
"IR SCFT",
"gauge theory",
"UV descriptions",
"R-charge",
"Newton polygon",
"superconformal index",
"geometric data",
"bipartite networks",
"duality",
"theory",
"SCFTs",
"Grassmannian",
"new class",
"torus",
"network",
"permutations",
"polygons",
"class",
"description",
"planar",
"point",
"surface",
"data",
"IR",
"index",
"cells",
"story"
],
"name": "Network and Seiberg duality",
"pagination": "36",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038701666"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep09(2012)036"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep09(2012)036",
"https://app.dimensions.ai/details/publication/pub.1038701666"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_577.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep09(2012)036"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2012)036'
This table displays all metadata directly associated to this object as RDF triples.
159 TRIPLES
21 PREDICATES
71 URIs
48 LITERALS
6 BLANK NODES