Calabi-Yau orbifolds and torus coverings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-09

AUTHORS

Amihay Hanany, Vishnu Jejjala, Sanjaye Ramgoolam, Rak-Kyeong Seong

ABSTRACT

The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of . By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus with an Abelian orbifold of the form , for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for . The roots of the polynomial equations correspond to orbifolds of the form , which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation. More... »

PAGES

116

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep09(2011)116

DOI

http://dx.doi.org/10.1007/jhep09(2011)116

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044007060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jejjala", 
        "givenName": "Vishnu", 
        "id": "sg:person.012701051217.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701051217.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramgoolam", 
        "givenName": "Sanjaye", 
        "id": "sg:person.016412723537.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412723537.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
            "Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seong", 
        "givenName": "Rak-Kyeong", 
        "id": "sg:person.012116400507.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116400507.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/2009/03/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009315256", 
          "https://doi.org/10.1088/1126-6708/2009/03/012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90042-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019087434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90042-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019087434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025339509", 
          "https://doi.org/10.1088/1126-6708/2006/01/036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025339509", 
          "https://doi.org/10.1088/1126-6708/2006/01/036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767392000898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029437322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438594", 
          "https://doi.org/10.1007/jhep06(2010)051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438594", 
          "https://doi.org/10.1007/jhep06(2010)051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2005.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032205267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033822855", 
          "https://doi.org/10.1007/s002200050102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2011)065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038934974", 
          "https://doi.org/10.1007/jhep03(2011)065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2011)027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041744620", 
          "https://doi.org/10.1007/jhep01(2011)027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410190", 
          "https://doi.org/10.1088/1126-6708/2006/01/096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410190", 
          "https://doi.org/10.1088/1126-6708/2006/01/096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2011)056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047657109", 
          "https://doi.org/10.1007/jhep06(2011)056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049415582", 
          "https://doi.org/10.1007/jhep06(2010)010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049415582", 
          "https://doi.org/10.1007/jhep06(2010)010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2000.v4.n6.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457009"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of . By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus with an Abelian orbifold of the form , for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for . The roots of the polynomial equations correspond to orbifolds of the form , which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep09(2011)116", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2773222", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2774712", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2784183", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2011"
      }
    ], 
    "name": "Calabi-Yau orbifolds and torus coverings", 
    "pagination": "116", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d19e8dcf12c5bf73c2e13443a36d313265ba142f26f8fe24e2c2d9e5d086fe01"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep09(2011)116"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044007060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep09(2011)116", 
      "https://app.dimensions.ai/details/publication/pub.1044007060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP09%282011%29116"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2011)116'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2011)116'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2011)116'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep09(2011)116'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep09(2011)116 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N227308da1d20417fa61428fd4198112c
4 schema:citation sg:pub.10.1007/jhep01(2011)027
5 sg:pub.10.1007/jhep03(2011)065
6 sg:pub.10.1007/jhep06(2010)010
7 sg:pub.10.1007/jhep06(2010)051
8 sg:pub.10.1007/jhep06(2011)056
9 sg:pub.10.1007/s002200050102
10 sg:pub.10.1088/1126-6708/2006/01/036
11 sg:pub.10.1088/1126-6708/2006/01/096
12 sg:pub.10.1088/1126-6708/2009/03/012
13 https://doi.org/10.1016/0550-3213(93)90042-n
14 https://doi.org/10.1016/j.nuclphysb.2005.02.035
15 https://doi.org/10.1107/s0108767392000898
16 https://doi.org/10.4310/atmp.2000.v4.n6.a2
17 schema:datePublished 2011-09
18 schema:datePublishedReg 2011-09-01
19 schema:description The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of . By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus with an Abelian orbifold of the form , for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of SD, the group of discrete symmetries of the toric diagram for . The roots of the polynomial equations correspond to orbifolds of the form , which are invariant under the corresponding subgroup of SD. In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N1872d14262d04a6a8f01406c52c949c1
24 N396f1bc624414d2897e24639f42985de
25 sg:journal.1052482
26 schema:name Calabi-Yau orbifolds and torus coverings
27 schema:pagination 116
28 schema:productId N09dd3fee4dcd4a3c9abc9e548e64892b
29 N539c5889915f40638bde2b8e3eba8110
30 Nf4b3f7434d76422686e554ea3fb579e9
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044007060
32 https://doi.org/10.1007/jhep09(2011)116
33 schema:sdDatePublished 2019-04-11T00:17
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8bd8500ce8e3413cbe76aa54e070c2ca
36 schema:url http://link.springer.com/10.1007%2FJHEP09%282011%29116
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N09dd3fee4dcd4a3c9abc9e548e64892b schema:name readcube_id
41 schema:value d19e8dcf12c5bf73c2e13443a36d313265ba142f26f8fe24e2c2d9e5d086fe01
42 rdf:type schema:PropertyValue
43 N0ff0b82fb83244a2bd33c7f1fbc5d79b rdf:first sg:person.012701051217.04
44 rdf:rest Nad073ad5aa354b36b3a349fe1d63a5ba
45 N1872d14262d04a6a8f01406c52c949c1 schema:issueNumber 9
46 rdf:type schema:PublicationIssue
47 N227308da1d20417fa61428fd4198112c rdf:first sg:person.012155553275.80
48 rdf:rest N0ff0b82fb83244a2bd33c7f1fbc5d79b
49 N396f1bc624414d2897e24639f42985de schema:volumeNumber 2011
50 rdf:type schema:PublicationVolume
51 N539c5889915f40638bde2b8e3eba8110 schema:name dimensions_id
52 schema:value pub.1044007060
53 rdf:type schema:PropertyValue
54 N5ee400e9161f45699eed94e873b3204e rdf:first sg:person.012116400507.33
55 rdf:rest rdf:nil
56 N8bd8500ce8e3413cbe76aa54e070c2ca schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nad073ad5aa354b36b3a349fe1d63a5ba rdf:first sg:person.016412723537.91
59 rdf:rest N5ee400e9161f45699eed94e873b3204e
60 Nf4b3f7434d76422686e554ea3fb579e9 schema:name doi
61 schema:value 10.1007/jhep09(2011)116
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:grant.2773222 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2011)116
70 rdf:type schema:MonetaryGrant
71 sg:grant.2774712 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2011)116
72 rdf:type schema:MonetaryGrant
73 sg:grant.2784183 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep09(2011)116
74 rdf:type schema:MonetaryGrant
75 sg:journal.1052482 schema:issn 1029-8479
76 1126-6708
77 schema:name Journal of High Energy Physics
78 rdf:type schema:Periodical
79 sg:person.012116400507.33 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
80 schema:familyName Seong
81 schema:givenName Rak-Kyeong
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116400507.33
83 rdf:type schema:Person
84 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
85 schema:familyName Hanany
86 schema:givenName Amihay
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
88 rdf:type schema:Person
89 sg:person.012701051217.04 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
90 schema:familyName Jejjala
91 schema:givenName Vishnu
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701051217.04
93 rdf:type schema:Person
94 sg:person.016412723537.91 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
95 schema:familyName Ramgoolam
96 schema:givenName Sanjaye
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412723537.91
98 rdf:type schema:Person
99 sg:pub.10.1007/jhep01(2011)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041744620
100 https://doi.org/10.1007/jhep01(2011)027
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/jhep03(2011)065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038934974
103 https://doi.org/10.1007/jhep03(2011)065
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/jhep06(2010)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049415582
106 https://doi.org/10.1007/jhep06(2010)010
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/jhep06(2010)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031438594
109 https://doi.org/10.1007/jhep06(2010)051
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep06(2011)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047657109
112 https://doi.org/10.1007/jhep06(2011)056
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s002200050102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033822855
115 https://doi.org/10.1007/s002200050102
116 rdf:type schema:CreativeWork
117 sg:pub.10.1088/1126-6708/2006/01/036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025339509
118 https://doi.org/10.1088/1126-6708/2006/01/036
119 rdf:type schema:CreativeWork
120 sg:pub.10.1088/1126-6708/2006/01/096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410190
121 https://doi.org/10.1088/1126-6708/2006/01/096
122 rdf:type schema:CreativeWork
123 sg:pub.10.1088/1126-6708/2009/03/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009315256
124 https://doi.org/10.1088/1126-6708/2009/03/012
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0550-3213(93)90042-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1019087434
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.nuclphysb.2005.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032205267
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1107/s0108767392000898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029437322
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4310/atmp.2000.v4.n6.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457009
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
135 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
136 Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
139 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
142 schema:name Department of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, U.K.
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...