Discrete quotients of 3-dimensional N=4 Coulomb branches via the cycle index View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-24

AUTHORS

Amihay Hanany, Marcus Sperling

ABSTRACT

The study of Coulomb branches of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories via the associated Hilbert series, the so-called monopole formula, has been proven useful not only for 3-dimensional theories, but also for Higgs branches of 5 and 6-dimensional gauge theories with 8 supercharges. Recently, a conjecture connected different phases of 6-dimensional Higgs branches via gauging of a discrete global Snsymmetry. On the corresponding 3-dimensional Coulomb branch, this amounts to a geometric Sn-quotient. In this note, we prove the conjecture on Coulomb branches with unitary nodes and, moreover, extend it to Coulomb branches with other classical groups. The results promote discrete Sn-quotients to a versatile tool in the study of Coulomb branches. More... »

PAGES

157

References to SciGraph publications

  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-06. Algebraic properties of the monopole formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-06-07. On orientifolds, discrete torsion, branes and M theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2018)157

    DOI

    http://dx.doi.org/10.1007/jhep08(2018)157

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106341456


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Wien, Boltzmanngasse 5, 1090, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Wien, Boltzmanngasse 5, 1090, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/06/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026086430", 
              "https://doi.org/10.1088/1126-6708/2000/06/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-24", 
        "datePublishedReg": "2018-08-24", 
        "description": "The study of Coulomb branches of 3-dimensional N=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} gauge theories via the associated Hilbert series, the so-called monopole formula, has been proven useful not only for 3-dimensional theories, but also for Higgs branches of 5 and 6-dimensional gauge theories with 8 supercharges. Recently, a conjecture connected different phases of 6-dimensional Higgs branches via gauging of a discrete global Snsymmetry. On the corresponding 3-dimensional Coulomb branch, this amounts to a geometric Sn-quotient. In this note, we prove the conjecture on Coulomb branches with unitary nodes and, moreover, extend it to Coulomb branches with other classical groups. The results promote discrete Sn-quotients to a versatile tool in the study of Coulomb branches.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep08(2018)157", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6206399", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "study", 
          "group", 
          "index", 
          "branches", 
          "different phases", 
          "quotient", 
          "nodes", 
          "series", 
          "results", 
          "tool", 
          "note", 
          "phase", 
          "versatile tool", 
          "cycle index", 
          "formula", 
          "classical groups", 
          "theory", 
          "supercharges", 
          "conjecture", 
          "gauging", 
          "Coulomb branch", 
          "Higgs branch", 
          "Hilbert series", 
          "monopole formula", 
          "gauge theory", 
          "discrete quotients"
        ], 
        "name": "Discrete quotients of 3-dimensional N=4 Coulomb branches via the cycle index", 
        "pagination": "157", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106341456"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2018)157"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2018)157", 
          "https://app.dimensions.ai/details/publication/pub.1106341456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_771.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep08(2018)157"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)157'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)157'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)157'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)157'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      70 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2018)157 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4b86348444a04605b7151f9d61328ccb
    4 schema:citation sg:pub.10.1007/jhep01(2014)005
    5 sg:pub.10.1007/jhep01(2015)150
    6 sg:pub.10.1007/jhep02(2017)023
    7 sg:pub.10.1007/jhep04(2017)042
    8 sg:pub.10.1007/jhep04(2018)127
    9 sg:pub.10.1007/jhep06(2016)130
    10 sg:pub.10.1007/jhep07(2018)061
    11 sg:pub.10.1007/jhep07(2018)098
    12 sg:pub.10.1007/jhep07(2018)168
    13 sg:pub.10.1007/jhep08(2016)016
    14 sg:pub.10.1007/jhep09(2014)178
    15 sg:pub.10.1007/jhep09(2014)185
    16 sg:pub.10.1007/jhep11(2016)175
    17 sg:pub.10.1007/jhep11(2017)079
    18 sg:pub.10.1007/jhep11(2017)126
    19 sg:pub.10.1007/jhep12(2014)103
    20 sg:pub.10.1007/jhep12(2015)118
    21 sg:pub.10.1007/s00220-017-2903-0
    22 sg:pub.10.1088/1126-6708/2000/06/013
    23 sg:pub.10.1088/1126-6708/2000/11/033
    24 schema:datePublished 2018-08-24
    25 schema:datePublishedReg 2018-08-24
    26 schema:description The study of Coulomb branches of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories via the associated Hilbert series, the so-called monopole formula, has been proven useful not only for 3-dimensional theories, but also for Higgs branches of 5 and 6-dimensional gauge theories with 8 supercharges. Recently, a conjecture connected different phases of 6-dimensional Higgs branches via gauging of a discrete global Snsymmetry. On the corresponding 3-dimensional Coulomb branch, this amounts to a geometric Sn-quotient. In this note, we prove the conjecture on Coulomb branches with unitary nodes and, moreover, extend it to Coulomb branches with other classical groups. The results promote discrete Sn-quotients to a versatile tool in the study of Coulomb branches.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N3436c8a6e55f4356b52b3520641a483f
    30 N6ac569ee012d4d36b9411fd1ec905e45
    31 sg:journal.1052482
    32 schema:keywords Coulomb branch
    33 Higgs branch
    34 Hilbert series
    35 branches
    36 classical groups
    37 conjecture
    38 cycle index
    39 different phases
    40 discrete quotients
    41 formula
    42 gauge theory
    43 gauging
    44 group
    45 index
    46 monopole formula
    47 nodes
    48 note
    49 phase
    50 quotient
    51 results
    52 series
    53 study
    54 supercharges
    55 theory
    56 tool
    57 versatile tool
    58 schema:name Discrete quotients of 3-dimensional N=4 Coulomb branches via the cycle index
    59 schema:pagination 157
    60 schema:productId N43ee4b6e80f54dbfaa72c905621b040d
    61 N82210ac97d834df787895a5da51b9ab8
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106341456
    63 https://doi.org/10.1007/jhep08(2018)157
    64 schema:sdDatePublished 2022-09-02T16:02
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nf1c19d9e8ebb4c51a186e3e8a209e11f
    67 schema:url https://doi.org/10.1007/jhep08(2018)157
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N3436c8a6e55f4356b52b3520641a483f schema:issueNumber 8
    72 rdf:type schema:PublicationIssue
    73 N43ee4b6e80f54dbfaa72c905621b040d schema:name dimensions_id
    74 schema:value pub.1106341456
    75 rdf:type schema:PropertyValue
    76 N4b86348444a04605b7151f9d61328ccb rdf:first sg:person.012155553275.80
    77 rdf:rest Neb2c3851a6c642c3baf32b46ee749865
    78 N6ac569ee012d4d36b9411fd1ec905e45 schema:volumeNumber 2018
    79 rdf:type schema:PublicationVolume
    80 N82210ac97d834df787895a5da51b9ab8 schema:name doi
    81 schema:value 10.1007/jhep08(2018)157
    82 rdf:type schema:PropertyValue
    83 Neb2c3851a6c642c3baf32b46ee749865 rdf:first sg:person.013671173243.88
    84 rdf:rest rdf:nil
    85 Nf1c19d9e8ebb4c51a186e3e8a209e11f schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Pure Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2018)157
    94 rdf:type schema:MonetaryGrant
    95 sg:grant.6206399 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2018)157
    96 rdf:type schema:MonetaryGrant
    97 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2018)157
    98 rdf:type schema:MonetaryGrant
    99 sg:journal.1052482 schema:issn 1029-8479
    100 1126-6708
    101 schema:name Journal of High Energy Physics
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    105 schema:familyName Hanany
    106 schema:givenName Amihay
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    108 rdf:type schema:Person
    109 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.10420.37
    110 schema:familyName Sperling
    111 schema:givenName Marcus
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    113 rdf:type schema:Person
    114 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    115 https://doi.org/10.1007/jhep01(2014)005
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    118 https://doi.org/10.1007/jhep01(2015)150
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    121 https://doi.org/10.1007/jhep02(2017)023
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    124 https://doi.org/10.1007/jhep04(2017)042
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    127 https://doi.org/10.1007/jhep04(2018)127
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    130 https://doi.org/10.1007/jhep06(2016)130
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    133 https://doi.org/10.1007/jhep07(2018)061
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    136 https://doi.org/10.1007/jhep07(2018)098
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    139 https://doi.org/10.1007/jhep07(2018)168
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    142 https://doi.org/10.1007/jhep08(2016)016
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    145 https://doi.org/10.1007/jhep09(2014)178
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    148 https://doi.org/10.1007/jhep09(2014)185
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    151 https://doi.org/10.1007/jhep11(2016)175
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    154 https://doi.org/10.1007/jhep11(2017)079
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    157 https://doi.org/10.1007/jhep11(2017)126
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    160 https://doi.org/10.1007/jhep12(2014)103
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    163 https://doi.org/10.1007/jhep12(2015)118
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    166 https://doi.org/10.1007/s00220-017-2903-0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1088/1126-6708/2000/06/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086430
    169 https://doi.org/10.1088/1126-6708/2000/06/013
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    172 https://doi.org/10.1088/1126-6708/2000/11/033
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.10420.37 schema:alternateName Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090, Wien, Austria
    175 schema:name Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090, Wien, Austria
    176 rdf:type schema:Organization
    177 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    178 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...