Geroch group description of bubbling geometries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-21

AUTHORS

Pratik Roy, Amitabh Virmani

ABSTRACT

The Riemann-Hilbert approach to studying solutions of supergravity theories allows us to associate spacetime independent monodromy matrices (matrices in the Geroch group) with solutions that effectively only depend on two spacetime coordinates. This offers insights into symmetries of supergravity theories, and in the classification of their solutions. In this paper, we initiate a systematic study of monodromy matrices for multi- center solutions of five-dimensional U(1)3 supergravity. We obtain monodromy matrices for a class of collinear Bena-Warner bubbling geometries. We show that for this class of solutions, monodromy matrices in the vector representation of SO(4,4) have only simple poles with residues of rank two and nilpotency degree two. These properties strongly suggest that an inverse scattering construction along the lines of [arXiv:1311.7018 [hep-th]] can be given for this class of solutions, though it is not attempted in this work. Along the way, we clarify a technical point in the existing literature: we show that the so-called “spectral flow transformations” of Bena, Bobev, and Warner are precisely a class of Harrison transformations when restricted to the situation of two commuting Killing symmetries in five-dimensions. More... »

PAGES

129

References to SciGraph publications

  • 2005-06-15. Special geometry of euclidean supersymmetry II. Hypermultiplets and the c-map in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-03-09. Special geometry of euclidean supersymmetry 1. Vector multiplets in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-08. Black Holes in Higher Dimensions in LIVING REVIEWS IN RELATIVITY
  • 2008-07-24. Black Holes, Black Rings, and their Microstates in SUPERSYMMETRIC MECHANICS - VOL. 3
  • 2014-11-14. Geroch group description of black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-03-13. New gravitational solutions via a Riemann-Hilbert approach in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-01. Two kissing bolts in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-28. Charged black rings from inverse scattering in GENERAL RELATIVITY AND GRAVITATION
  • 2015-04-14. Floating JMaRT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-20. Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-23. A Riemann-Hilbert approach to rotating attractors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-12. Subtracted geometry from Harrison transformations: II in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-13. Extremal black holes, nilpotent orbits and the true fake superpotential in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10-11. Special geometry of Euclidean supersymmetry IV: the local c-map in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-10. An inverse scattering construction of the JMaRT fuzzball in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-30. Time-like reductions of five-dimensional supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-03. Smooth non-extremal D1-D5-P solutions as charged gravitational instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-09-04. General black holes, untwisted in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-27. Interacting non-BPS black holes in GENERAL RELATIVITY AND GRAVITATION
  • 2012-07-13. Subtracted geometry from Harrison transformations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-04. Inverse scattering and the Geroch group in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-24. A bubbling bolt in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-06-06. Supergravity microstates for BPS black holes and black rings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-05. Un-twisting the NHEK with spectral flows in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-24. An inverse scattering formalism for STU supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-02-11. Non-BPS multi-bubble microstate geometries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-30. Bolting multicenter solutions in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2018)129

    DOI

    http://dx.doi.org/10.1007/jhep08(2018)129

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106288407


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.444722.3", 
              "name": [
                "Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Pratik", 
            "id": "sg:person.015426374335.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426374335.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400085, Mumbai, India", 
              "id": "http://www.grid.ac/institutes/grid.450257.1", 
              "name": [
                "Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India", 
                "Institute of Physics, Sachivalaya Marg, 751005, Bhubaneswar, Odisha, India", 
                "Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400085, Mumbai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Virmani", 
            "givenName": "Amitabh", 
            "id": "sg:person.016527443365.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016527443365.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2016)027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017475784", 
              "https://doi.org/10.1007/jhep08(2016)027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001005388", 
              "https://doi.org/10.1007/jhep07(2014)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014367732", 
              "https://doi.org/10.1007/jhep03(2014)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-013-1586-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049323274", 
              "https://doi.org/10.1007/s10714-013-1586-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026168226", 
              "https://doi.org/10.1007/jhep04(2014)190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-011-1256-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009580219", 
              "https://doi.org/10.1007/s10714-011-1256-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2016)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014477491", 
              "https://doi.org/10.1007/jhep02(2016)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029826334", 
              "https://doi.org/10.1007/jhep07(2013)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051496825", 
              "https://doi.org/10.1088/1126-6708/2009/07/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015815352", 
              "https://doi.org/10.1007/jhep03(2013)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.12942/lrr-2008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045814478", 
              "https://doi.org/10.12942/lrr-2008-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/03/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045617187", 
              "https://doi.org/10.1088/1126-6708/2004/03/028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-79523-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042676061", 
              "https://doi.org/10.1007/978-3-540-79523-0_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2014)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034023819", 
              "https://doi.org/10.1007/jhep11(2014)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2017)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086155512", 
              "https://doi.org/10.1007/jhep06(2017)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008913046", 
              "https://doi.org/10.1007/jhep02(2013)011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790262", 
              "https://doi.org/10.1007/jhep02(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025733938", 
              "https://doi.org/10.1007/jhep04(2015)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036425864", 
              "https://doi.org/10.1007/jhep01(2010)038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002635499", 
              "https://doi.org/10.1007/jhep10(2015)066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2018)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101534755", 
              "https://doi.org/10.1007/jhep03(2018)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016604894", 
              "https://doi.org/10.1088/1126-6708/2005/06/025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/06/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003352143", 
              "https://doi.org/10.1088/1126-6708/2006/06/007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2013)017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023133237", 
              "https://doi.org/10.1007/jhep09(2013)017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050084903", 
              "https://doi.org/10.1007/jhep12(2014)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083419196", 
              "https://doi.org/10.1007/jhep01(2017)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045539430", 
              "https://doi.org/10.1007/jhep07(2012)086"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-21", 
        "datePublishedReg": "2018-08-21", 
        "description": "The Riemann-Hilbert approach to studying solutions of supergravity theories allows us to associate spacetime independent monodromy matrices (matrices in the Geroch group) with solutions that effectively only depend on two spacetime coordinates. This offers insights into symmetries of supergravity theories, and in the classification of their solutions. In this paper, we initiate a systematic study of monodromy matrices for multi- center solutions of five-dimensional U(1)3 supergravity. We obtain monodromy matrices for a class of collinear Bena-Warner bubbling geometries. We show that for this class of solutions, monodromy matrices in the vector representation of SO(4,4) have only simple poles with residues of rank two and nilpotency degree two. These properties strongly suggest that an inverse scattering construction along the lines of [arXiv:1311.7018 [hep-th]] can be given for this class of solutions, though it is not attempted in this work. Along the way, we clarify a technical point in the existing literature: we show that the so-called \u201cspectral flow transformations\u201d of Bena, Bobev, and Warner are precisely a class of Harrison transformations when restricted to the situation of two commuting Killing symmetries in five-dimensions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep08(2018)129", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "monodromy matrix", 
          "class of solutions", 
          "Riemann\u2013Hilbert approach", 
          "supergravity theories", 
          "multi-center solutions", 
          "spacetime coordinates", 
          "simple poles", 
          "rank two", 
          "degree two", 
          "bubbling geometries", 
          "Harrison transformation", 
          "solution", 
          "theory", 
          "matrix", 
          "class", 
          "symmetry", 
          "supergravity", 
          "geometry", 
          "vector representation", 
          "inverse", 
          "Bobev", 
          "coordinates", 
          "representation", 
          "five-dimension", 
          "group description", 
          "approach", 
          "pole", 
          "two", 
          "construction", 
          "point", 
          "flow transformation", 
          "transformation", 
          "description", 
          "systematic study", 
          "properties", 
          "technical point", 
          "Warner", 
          "situation", 
          "classification", 
          "work", 
          "way", 
          "literature", 
          "insights", 
          "lines", 
          "paper", 
          "study", 
          "Bena", 
          "residues", 
          "spacetime independent monodromy matrices", 
          "independent monodromy matrices", 
          "collinear Bena-Warner bubbling geometries", 
          "Bena-Warner bubbling geometries", 
          "nilpotency degree two", 
          "spectral flow transformations", 
          "Geroch group description"
        ], 
        "name": "Geroch group description of bubbling geometries", 
        "pagination": "129", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106288407"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2018)129"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2018)129", 
          "https://app.dimensions.ai/details/publication/pub.1106288407"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_762.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep08(2018)129"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)129'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)129'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)129'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2018)129'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      22 PREDICATES      107 URIs      72 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2018)129 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne91c225821a248f49dfb37423d8d3fe4
    4 schema:citation sg:pub.10.1007/978-3-540-79523-0_1
    5 sg:pub.10.1007/jhep01(2010)038
    6 sg:pub.10.1007/jhep01(2017)127
    7 sg:pub.10.1007/jhep02(2013)011
    8 sg:pub.10.1007/jhep02(2016)073
    9 sg:pub.10.1007/jhep02(2018)008
    10 sg:pub.10.1007/jhep03(2013)028
    11 sg:pub.10.1007/jhep03(2014)101
    12 sg:pub.10.1007/jhep03(2018)080
    13 sg:pub.10.1007/jhep04(2014)190
    14 sg:pub.10.1007/jhep04(2015)067
    15 sg:pub.10.1007/jhep06(2017)123
    16 sg:pub.10.1007/jhep07(2012)086
    17 sg:pub.10.1007/jhep07(2013)089
    18 sg:pub.10.1007/jhep07(2014)118
    19 sg:pub.10.1007/jhep08(2016)027
    20 sg:pub.10.1007/jhep09(2013)017
    21 sg:pub.10.1007/jhep10(2015)066
    22 sg:pub.10.1007/jhep11(2014)068
    23 sg:pub.10.1007/jhep12(2014)070
    24 sg:pub.10.1007/s10714-011-1256-9
    25 sg:pub.10.1007/s10714-013-1586-x
    26 sg:pub.10.1088/1126-6708/2004/03/028
    27 sg:pub.10.1088/1126-6708/2005/06/025
    28 sg:pub.10.1088/1126-6708/2006/06/007
    29 sg:pub.10.1088/1126-6708/2009/07/066
    30 sg:pub.10.12942/lrr-2008-6
    31 schema:datePublished 2018-08-21
    32 schema:datePublishedReg 2018-08-21
    33 schema:description The Riemann-Hilbert approach to studying solutions of supergravity theories allows us to associate spacetime independent monodromy matrices (matrices in the Geroch group) with solutions that effectively only depend on two spacetime coordinates. This offers insights into symmetries of supergravity theories, and in the classification of their solutions. In this paper, we initiate a systematic study of monodromy matrices for multi- center solutions of five-dimensional U(1)3 supergravity. We obtain monodromy matrices for a class of collinear Bena-Warner bubbling geometries. We show that for this class of solutions, monodromy matrices in the vector representation of SO(4,4) have only simple poles with residues of rank two and nilpotency degree two. These properties strongly suggest that an inverse scattering construction along the lines of [arXiv:1311.7018 [hep-th]] can be given for this class of solutions, though it is not attempted in this work. Along the way, we clarify a technical point in the existing literature: we show that the so-called “spectral flow transformations” of Bena, Bobev, and Warner are precisely a class of Harrison transformations when restricted to the situation of two commuting Killing symmetries in five-dimensions.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N3f671695306c4c65bdd694b1076bf029
    38 N562d5a469ac64af4b6bf1c4998c77a65
    39 sg:journal.1052482
    40 schema:keywords Bena
    41 Bena-Warner bubbling geometries
    42 Bobev
    43 Geroch group description
    44 Harrison transformation
    45 Riemann–Hilbert approach
    46 Warner
    47 approach
    48 bubbling geometries
    49 class
    50 class of solutions
    51 classification
    52 collinear Bena-Warner bubbling geometries
    53 construction
    54 coordinates
    55 degree two
    56 description
    57 five-dimension
    58 flow transformation
    59 geometry
    60 group description
    61 independent monodromy matrices
    62 insights
    63 inverse
    64 lines
    65 literature
    66 matrix
    67 monodromy matrix
    68 multi-center solutions
    69 nilpotency degree two
    70 paper
    71 point
    72 pole
    73 properties
    74 rank two
    75 representation
    76 residues
    77 simple poles
    78 situation
    79 solution
    80 spacetime coordinates
    81 spacetime independent monodromy matrices
    82 spectral flow transformations
    83 study
    84 supergravity
    85 supergravity theories
    86 symmetry
    87 systematic study
    88 technical point
    89 theory
    90 transformation
    91 two
    92 vector representation
    93 way
    94 work
    95 schema:name Geroch group description of bubbling geometries
    96 schema:pagination 129
    97 schema:productId N3f30edafd7854a4580a9a2a71820409d
    98 N8c373f12cdba4a43a94809bfa6458f8f
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106288407
    100 https://doi.org/10.1007/jhep08(2018)129
    101 schema:sdDatePublished 2021-12-01T19:42
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Nf517a837bdcc4d7491e36f10da5512ee
    104 schema:url https://doi.org/10.1007/jhep08(2018)129
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N3f30edafd7854a4580a9a2a71820409d schema:name doi
    109 schema:value 10.1007/jhep08(2018)129
    110 rdf:type schema:PropertyValue
    111 N3f671695306c4c65bdd694b1076bf029 schema:issueNumber 8
    112 rdf:type schema:PublicationIssue
    113 N40b1820b678e42509be8bb5323eddfee rdf:first sg:person.016527443365.37
    114 rdf:rest rdf:nil
    115 N562d5a469ac64af4b6bf1c4998c77a65 schema:volumeNumber 2018
    116 rdf:type schema:PublicationVolume
    117 N8c373f12cdba4a43a94809bfa6458f8f schema:name dimensions_id
    118 schema:value pub.1106288407
    119 rdf:type schema:PropertyValue
    120 Ne91c225821a248f49dfb37423d8d3fe4 rdf:first sg:person.015426374335.08
    121 rdf:rest N40b1820b678e42509be8bb5323eddfee
    122 Nf517a837bdcc4d7491e36f10da5512ee schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Mathematical Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Pure Mathematics
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1052482 schema:issn 1029-8479
    131 1126-6708
    132 schema:name Journal of High Energy Physics
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.015426374335.08 schema:affiliation grid-institutes:grid.444722.3
    136 schema:familyName Roy
    137 schema:givenName Pratik
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015426374335.08
    139 rdf:type schema:Person
    140 sg:person.016527443365.37 schema:affiliation grid-institutes:grid.450257.1
    141 schema:familyName Virmani
    142 schema:givenName Amitabh
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016527443365.37
    144 rdf:type schema:Person
    145 sg:pub.10.1007/978-3-540-79523-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042676061
    146 https://doi.org/10.1007/978-3-540-79523-0_1
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep01(2010)038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425864
    149 https://doi.org/10.1007/jhep01(2010)038
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep01(2017)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083419196
    152 https://doi.org/10.1007/jhep01(2017)127
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep02(2013)011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008913046
    155 https://doi.org/10.1007/jhep02(2013)011
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep02(2016)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014477491
    158 https://doi.org/10.1007/jhep02(2016)073
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep02(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790262
    161 https://doi.org/10.1007/jhep02(2018)008
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep03(2013)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815352
    164 https://doi.org/10.1007/jhep03(2013)028
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep03(2014)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014367732
    167 https://doi.org/10.1007/jhep03(2014)101
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep03(2018)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101534755
    170 https://doi.org/10.1007/jhep03(2018)080
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep04(2014)190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026168226
    173 https://doi.org/10.1007/jhep04(2014)190
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep04(2015)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025733938
    176 https://doi.org/10.1007/jhep04(2015)067
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep06(2017)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086155512
    179 https://doi.org/10.1007/jhep06(2017)123
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep07(2012)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045539430
    182 https://doi.org/10.1007/jhep07(2012)086
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep07(2013)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029826334
    185 https://doi.org/10.1007/jhep07(2013)089
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep07(2014)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001005388
    188 https://doi.org/10.1007/jhep07(2014)118
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep08(2016)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017475784
    191 https://doi.org/10.1007/jhep08(2016)027
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep09(2013)017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023133237
    194 https://doi.org/10.1007/jhep09(2013)017
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep10(2015)066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002635499
    197 https://doi.org/10.1007/jhep10(2015)066
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep11(2014)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034023819
    200 https://doi.org/10.1007/jhep11(2014)068
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep12(2014)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050084903
    203 https://doi.org/10.1007/jhep12(2014)070
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10714-011-1256-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009580219
    206 https://doi.org/10.1007/s10714-011-1256-9
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10714-013-1586-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049323274
    209 https://doi.org/10.1007/s10714-013-1586-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1088/1126-6708/2004/03/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045617187
    212 https://doi.org/10.1088/1126-6708/2004/03/028
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1088/1126-6708/2005/06/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016604894
    215 https://doi.org/10.1088/1126-6708/2005/06/025
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1088/1126-6708/2006/06/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003352143
    218 https://doi.org/10.1088/1126-6708/2006/06/007
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1088/1126-6708/2009/07/066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496825
    221 https://doi.org/10.1088/1126-6708/2009/07/066
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.12942/lrr-2008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045814478
    224 https://doi.org/10.12942/lrr-2008-6
    225 rdf:type schema:CreativeWork
    226 grid-institutes:grid.444722.3 schema:alternateName Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India
    227 schema:name Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India
    228 rdf:type schema:Organization
    229 grid-institutes:grid.450257.1 schema:alternateName Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400085, Mumbai, India
    230 schema:name Chennai Mathematical Institute, H1 SIPCOT IT Park, 603103, Kelambakkam, Tamil Nadu, India
    231 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400085, Mumbai, India
    232 Institute of Physics, Sachivalaya Marg, 751005, Bhubaneswar, Odisha, India
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...