SUSY monopole potentials in 2+1 dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-21

AUTHORS

Francesco Benini, Sergio Benvenuti, Sara Pasquetti

ABSTRACT

Gauge theories in 2+1 dimensions can admit monopole operators in the potential. Starting with the theory without monopole potential, if the monopole potential is relevant there is an RG flow to the monopole-deformed theory. Here, focusing on U(Nc) SQCD with Nf flavors and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetry, we show that even when the monopole potential is irrelevant, the monopole-modified theory TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} can exist and enjoy Seiberg-like dualities. We provide a renormalizable UV completion of TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} and an electric-magnetic dual description TM′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}}^{\prime } $$\end{document}. We subject our proposal to various consistency checks such as mass deformations and Sb3 partition functions checks. We observe that TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} is the S-duality wall of 4D N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD. We also consider monopole-deformed theories with Chern-Simons couplings and their duals. More... »

PAGES

86

References to SciGraph publications

  • 2013-07-11. Aspects of 3d Chern-Simons-Matter theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-01. Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-10-17. Comments on 3d Seiberg-like dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-29. Exactly marginal deformations and global symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12. Clebsch–Gordan and Racah–Wigner Coefficients for a Continuous Series of Representations of ?q (??(2, ℝ)) in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-26. Charges of monopole operators in Chern-Simons Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-04. Index for three dimensional superconformal field theories with general R-charge assignments in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04-23. On mirror symmetry in three dimensional Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-24. Notes on SUSY gauge theories on three-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. SUSY gauge theories on squashed three-spheres in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-19. T-branes through 3d mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-18. An E7 surprise in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-11-08. Central charges and U(1)R symmetries in 𝒩 = 1 super Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-17. Exact results for Wilson loops in superconformal Chern-Simons theories with matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-24. 3d dualities from 4d dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04-30. A crack in the conformal window in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-09. Quantum corrections to Chern-Simons theories with flavor and their AdS4 duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-26. A TQFT of Turaev–Viro Type on Shaped Triangulations in ANNALES HENRI POINCARÉ
  • 2014-02-21. 6j Symbols for the Modular Double, Quantum Hyperbolic Geometry, and Supersymmetric Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2012-11-05. Notes on adding D6 branes wrapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}\mathbb{P} $$\end{document}3 in AdS4 × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{C}\mathbb{P} $$\end{document}3 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02-10. Chiral flavors and M2-branes at toric CY4 singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-09-19. On Conformal Deformations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-08-04. Conformal manifolds for the conifold and other toric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-31. The exact superconformal R-symmetry extremizes Z in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-06-05. Scaling dimensions of monopole operators in the ℂℙNb−1 theory in 2 + 1 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2016-08-23. 3d N = 2 mirror symmetry, pq-webs and monopole superpotentials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-07-14. Intersecting surface defects and instanton partition functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01-19. Accidental symmetries and the conformal bootstrap in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-12-15. Gauge Theories Labelled by Three-Manifolds in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-12-21. AGT on the S-duality wall in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-20. 3d dualities from 4d dualities for orthogonal groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-07. The virtue of defects in 4D gauge theories and 2D CFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-04-29. M2-brane surface operators and gauge theory dualities in Toda in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-22. Towards the F-theorem: field theories on the three-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2017)086

    DOI

    http://dx.doi.org/10.1007/jhep08(2017)086

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091289653


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International School of Advanced Studies (SISSA) and INFN \u2014 Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5970.b", 
              "name": [
                "Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.", 
                "International School of Advanced Studies (SISSA) and INFN \u2014 Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International School of Advanced Studies (SISSA) and INFN \u2014 Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5970.b", 
              "name": [
                "International School of Advanced Studies (SISSA) and INFN \u2014 Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benvenuti", 
            "givenName": "Sergio", 
            "id": "sg:person.010361163577.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010361163577.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica G. Occhialini, Universit\u00e0 Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Dipartimento di Fisica G. Occhialini, Universit\u00e0 Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasquetti", 
            "givenName": "Sara", 
            "id": "sg:person.0663275574.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663275574.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep12(2010)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022546572", 
              "https://doi.org/10.1007/jhep12(2010)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-015-0427-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017608275", 
              "https://doi.org/10.1007/s00023-015-0427-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00005590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038246031", 
              "https://doi.org/10.1007/pl00005590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010940528", 
              "https://doi.org/10.1007/jhep03(2011)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014720481", 
              "https://doi.org/10.1007/jhep04(2013)165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033330104", 
              "https://doi.org/10.1007/jhep08(2013)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008227993", 
              "https://doi.org/10.1007/jhep02(2010)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040281622", 
              "https://doi.org/10.1007/jhep05(2012)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012688879", 
              "https://doi.org/10.1007/jhep01(2016)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2017)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090684839", 
              "https://doi.org/10.1007/jhep07(2017)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2011)075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000059597", 
              "https://doi.org/10.1007/jhep10(2011)075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/08/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008508234", 
              "https://doi.org/10.1088/1126-6708/2005/08/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1863-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039558900", 
              "https://doi.org/10.1007/s00220-013-1863-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007221034", 
              "https://doi.org/10.1007/jhep10(2012)129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009836669", 
              "https://doi.org/10.1007/jhep06(2010)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2015)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043256174", 
              "https://doi.org/10.1007/jhep06(2015)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032417356", 
              "https://doi.org/10.1007/jhep06(2011)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/09/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024612482", 
              "https://doi.org/10.1088/1126-6708/2002/09/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040084294", 
              "https://doi.org/10.1007/jhep07(2013)149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036695386", 
              "https://doi.org/10.1007/jhep01(2010)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001667186", 
              "https://doi.org/10.1088/1126-6708/1999/04/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027488820", 
              "https://doi.org/10.1007/jhep04(2011)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-014-0684-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044145163", 
              "https://doi.org/10.1007/s11005-014-0684-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030117451", 
              "https://doi.org/10.1007/jhep07(2016)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/11/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017852871", 
              "https://doi.org/10.1088/1126-6708/2003/11/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033726360", 
              "https://doi.org/10.1007/jhep06(2011)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003742519", 
              "https://doi.org/10.1007/jhep05(2011)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035231975", 
              "https://doi.org/10.1007/jhep08(2013)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046366250", 
              "https://doi.org/10.1007/jhep09(2011)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001748983", 
              "https://doi.org/10.1007/jhep08(2016)136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2012)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020812015", 
              "https://doi.org/10.1007/jhep11(2012)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046008323", 
              "https://doi.org/10.1007/jhep07(2013)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003205599", 
              "https://doi.org/10.1007/jhep04(2016)183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052358077", 
              "https://doi.org/10.1007/jhep03(2010)089"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-21", 
        "datePublishedReg": "2017-08-21", 
        "description": "Gauge theories in 2+1 dimensions can admit monopole operators in the potential. Starting with the theory without monopole potential, if the monopole potential is relevant there is an RG flow to the monopole-deformed theory. Here, focusing on U(Nc) SQCD with Nf flavors and N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} supersymmetry, we show that even when the monopole potential is irrelevant, the monopole-modified theory TM\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{T}}_{\\mathfrak{M}} $$\\end{document} can exist and enjoy Seiberg-like dualities. We provide a renormalizable UV completion of TM\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{T}}_{\\mathfrak{M}} $$\\end{document} and an electric-magnetic dual description TM\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{T}}_{\\mathfrak{M}}^{\\prime } $$\\end{document}. We subject our proposal to various consistency checks such as mass deformations and Sb3 partition functions checks. We observe that TM\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathcal{T}}_{\\mathfrak{M}} $$\\end{document} is the S-duality wall of 4D N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} SQCD. We also consider monopole-deformed theories with Chern-Simons couplings and their duals.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep08(2017)086", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3938182", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "monopole potential", 
          "Chern-Simons coupling", 
          "RG flow", 
          "Seiberg-like dualities", 
          "dual description", 
          "monopole operators", 
          "gauge theory", 
          "UV completion", 
          "Nf flavors", 
          "theory", 
          "consistency check", 
          "mass deformation", 
          "supersymmetry", 
          "duality", 
          "monopole", 
          "operators", 
          "SQCD", 
          "dual", 
          "dimensions", 
          "function check", 
          "coupling", 
          "flow", 
          "description", 
          "check", 
          "potential", 
          "deformation", 
          "proposal", 
          "flavor", 
          "wall", 
          "completion"
        ], 
        "name": "SUSY monopole potentials in 2+1 dimensions", 
        "pagination": "86", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091289653"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2017)086"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2017)086", 
          "https://app.dimensions.ai/details/publication/pub.1091289653"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep08(2017)086"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2017)086'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2017)086'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2017)086'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2017)086'


     

    This table displays all metadata directly associated to this object as RDF triples.

    283 TRIPLES      21 PREDICATES      98 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2017)086 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author N61140ada9a224ad5b381a8ef83678c9e
    7 schema:citation sg:pub.10.1007/jhep01(2010)110
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2016)110
    10 sg:pub.10.1007/jhep02(2010)036
    11 sg:pub.10.1007/jhep03(2010)089
    12 sg:pub.10.1007/jhep03(2011)127
    13 sg:pub.10.1007/jhep04(2011)007
    14 sg:pub.10.1007/jhep04(2013)165
    15 sg:pub.10.1007/jhep04(2016)183
    16 sg:pub.10.1007/jhep05(2011)014
    17 sg:pub.10.1007/jhep05(2011)015
    18 sg:pub.10.1007/jhep05(2012)159
    19 sg:pub.10.1007/jhep06(2010)106
    20 sg:pub.10.1007/jhep06(2011)025
    21 sg:pub.10.1007/jhep06(2011)102
    22 sg:pub.10.1007/jhep06(2015)037
    23 sg:pub.10.1007/jhep07(2013)079
    24 sg:pub.10.1007/jhep07(2013)149
    25 sg:pub.10.1007/jhep07(2016)093
    26 sg:pub.10.1007/jhep07(2017)073
    27 sg:pub.10.1007/jhep08(2013)046
    28 sg:pub.10.1007/jhep08(2013)099
    29 sg:pub.10.1007/jhep08(2016)136
    30 sg:pub.10.1007/jhep09(2011)005
    31 sg:pub.10.1007/jhep09(2014)178
    32 sg:pub.10.1007/jhep09(2014)185
    33 sg:pub.10.1007/jhep10(2011)075
    34 sg:pub.10.1007/jhep10(2012)129
    35 sg:pub.10.1007/jhep11(2012)015
    36 sg:pub.10.1007/jhep12(2010)079
    37 sg:pub.10.1007/pl00005590
    38 sg:pub.10.1007/s00023-015-0427-8
    39 sg:pub.10.1007/s00220-013-1863-2
    40 sg:pub.10.1007/s11005-010-0369-5
    41 sg:pub.10.1007/s11005-014-0684-3
    42 sg:pub.10.1088/1126-6708/1999/04/021
    43 sg:pub.10.1088/1126-6708/2002/09/046
    44 sg:pub.10.1088/1126-6708/2002/11/049
    45 sg:pub.10.1088/1126-6708/2002/12/044
    46 sg:pub.10.1088/1126-6708/2003/11/013
    47 sg:pub.10.1088/1126-6708/2005/08/024
    48 schema:datePublished 2017-08-21
    49 schema:datePublishedReg 2017-08-21
    50 schema:description Gauge theories in 2+1 dimensions can admit monopole operators in the potential. Starting with the theory without monopole potential, if the monopole potential is relevant there is an RG flow to the monopole-deformed theory. Here, focusing on U(Nc) SQCD with Nf flavors and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetry, we show that even when the monopole potential is irrelevant, the monopole-modified theory TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} can exist and enjoy Seiberg-like dualities. We provide a renormalizable UV completion of TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} and an electric-magnetic dual description TM′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}}^{\prime } $$\end{document}. We subject our proposal to various consistency checks such as mass deformations and Sb3 partition functions checks. We observe that TM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{T}}_{\mathfrak{M}} $$\end{document} is the S-duality wall of 4D N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD. We also consider monopole-deformed theories with Chern-Simons couplings and their duals.
    51 schema:genre article
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N599a781ebce24dad9cf713904afea9d7
    54 Nd38a67a6266a4f80bf0f3cb25a3f0655
    55 sg:journal.1052482
    56 schema:keywords Chern-Simons coupling
    57 Nf flavors
    58 RG flow
    59 SQCD
    60 Seiberg-like dualities
    61 UV completion
    62 check
    63 completion
    64 consistency check
    65 coupling
    66 deformation
    67 description
    68 dimensions
    69 dual
    70 dual description
    71 duality
    72 flavor
    73 flow
    74 function check
    75 gauge theory
    76 mass deformation
    77 monopole
    78 monopole operators
    79 monopole potential
    80 operators
    81 potential
    82 proposal
    83 supersymmetry
    84 theory
    85 wall
    86 schema:name SUSY monopole potentials in 2+1 dimensions
    87 schema:pagination 86
    88 schema:productId N9105a9a2370f45e3889587a5cf235bc1
    89 N9edc6cca909447d78976dae4bf5f7fff
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091289653
    91 https://doi.org/10.1007/jhep08(2017)086
    92 schema:sdDatePublished 2022-12-01T06:36
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Naff63f754efa485ca4c54fce4c1e4e50
    95 schema:url https://doi.org/10.1007/jhep08(2017)086
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N599a781ebce24dad9cf713904afea9d7 schema:volumeNumber 2017
    100 rdf:type schema:PublicationVolume
    101 N61140ada9a224ad5b381a8ef83678c9e rdf:first sg:person.011505670225.30
    102 rdf:rest Na4c239bf98d748339d833036800fb589
    103 N9105a9a2370f45e3889587a5cf235bc1 schema:name doi
    104 schema:value 10.1007/jhep08(2017)086
    105 rdf:type schema:PropertyValue
    106 N9edc6cca909447d78976dae4bf5f7fff schema:name dimensions_id
    107 schema:value pub.1091289653
    108 rdf:type schema:PropertyValue
    109 Na4c239bf98d748339d833036800fb589 rdf:first sg:person.010361163577.18
    110 rdf:rest Nd426b69578a44ef2829879fa760b1eb5
    111 Naff63f754efa485ca4c54fce4c1e4e50 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Nd38a67a6266a4f80bf0f3cb25a3f0655 schema:issueNumber 8
    114 rdf:type schema:PublicationIssue
    115 Nd426b69578a44ef2829879fa760b1eb5 rdf:first sg:person.0663275574.18
    116 rdf:rest rdf:nil
    117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Mathematical Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Mathematical Physics
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Physical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Quantum Physics
    131 rdf:type schema:DefinedTerm
    132 sg:grant.3938182 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2017)086
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1052482 schema:issn 1029-8479
    135 1126-6708
    136 schema:name Journal of High Energy Physics
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.010361163577.18 schema:affiliation grid-institutes:grid.5970.b
    140 schema:familyName Benvenuti
    141 schema:givenName Sergio
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010361163577.18
    143 rdf:type schema:Person
    144 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.5970.b
    145 schema:familyName Benini
    146 schema:givenName Francesco
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    148 rdf:type schema:Person
    149 sg:person.0663275574.18 schema:affiliation grid-institutes:grid.7563.7
    150 schema:familyName Pasquetti
    151 schema:givenName Sara
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663275574.18
    153 rdf:type schema:Person
    154 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
    155 https://doi.org/10.1007/jhep01(2010)110
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    158 https://doi.org/10.1007/jhep01(2014)005
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep01(2016)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012688879
    161 https://doi.org/10.1007/jhep01(2016)110
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep02(2010)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008227993
    164 https://doi.org/10.1007/jhep02(2010)036
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep03(2010)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358077
    167 https://doi.org/10.1007/jhep03(2010)089
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep03(2011)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010940528
    170 https://doi.org/10.1007/jhep03(2011)127
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep04(2011)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027488820
    173 https://doi.org/10.1007/jhep04(2011)007
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep04(2013)165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014720481
    176 https://doi.org/10.1007/jhep04(2013)165
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep04(2016)183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003205599
    179 https://doi.org/10.1007/jhep04(2016)183
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep05(2011)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742519
    182 https://doi.org/10.1007/jhep05(2011)014
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    185 https://doi.org/10.1007/jhep05(2011)015
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep05(2012)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040281622
    188 https://doi.org/10.1007/jhep05(2012)159
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep06(2010)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836669
    191 https://doi.org/10.1007/jhep06(2010)106
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep06(2011)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726360
    194 https://doi.org/10.1007/jhep06(2011)025
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep06(2011)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032417356
    197 https://doi.org/10.1007/jhep06(2011)102
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep06(2015)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043256174
    200 https://doi.org/10.1007/jhep06(2015)037
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep07(2013)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046008323
    203 https://doi.org/10.1007/jhep07(2013)079
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep07(2013)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084294
    206 https://doi.org/10.1007/jhep07(2013)149
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep07(2016)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030117451
    209 https://doi.org/10.1007/jhep07(2016)093
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep07(2017)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090684839
    212 https://doi.org/10.1007/jhep07(2017)073
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep08(2013)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035231975
    215 https://doi.org/10.1007/jhep08(2013)046
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep08(2013)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033330104
    218 https://doi.org/10.1007/jhep08(2013)099
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep08(2016)136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001748983
    221 https://doi.org/10.1007/jhep08(2016)136
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep09(2011)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046366250
    224 https://doi.org/10.1007/jhep09(2011)005
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    227 https://doi.org/10.1007/jhep09(2014)178
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    230 https://doi.org/10.1007/jhep09(2014)185
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep10(2011)075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000059597
    233 https://doi.org/10.1007/jhep10(2011)075
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep10(2012)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007221034
    236 https://doi.org/10.1007/jhep10(2012)129
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep11(2012)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020812015
    239 https://doi.org/10.1007/jhep11(2012)015
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep12(2010)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022546572
    242 https://doi.org/10.1007/jhep12(2010)079
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/pl00005590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038246031
    245 https://doi.org/10.1007/pl00005590
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00023-015-0427-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017608275
    248 https://doi.org/10.1007/s00023-015-0427-8
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00220-013-1863-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039558900
    251 https://doi.org/10.1007/s00220-013-1863-2
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    254 https://doi.org/10.1007/s11005-010-0369-5
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s11005-014-0684-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044145163
    257 https://doi.org/10.1007/s11005-014-0684-3
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1088/1126-6708/1999/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667186
    260 https://doi.org/10.1088/1126-6708/1999/04/021
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1088/1126-6708/2002/09/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612482
    263 https://doi.org/10.1088/1126-6708/2002/09/046
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    266 https://doi.org/10.1088/1126-6708/2002/11/049
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    269 https://doi.org/10.1088/1126-6708/2002/12/044
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1088/1126-6708/2003/11/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017852871
    272 https://doi.org/10.1088/1126-6708/2003/11/013
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1088/1126-6708/2005/08/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508234
    275 https://doi.org/10.1088/1126-6708/2005/08/024
    276 rdf:type schema:CreativeWork
    277 grid-institutes:grid.5970.b schema:alternateName International School of Advanced Studies (SISSA) and INFN — Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    278 schema:name Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    279 International School of Advanced Studies (SISSA) and INFN — Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    280 rdf:type schema:Organization
    281 grid-institutes:grid.7563.7 schema:alternateName Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
    282 schema:name Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
    283 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...