Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-02

AUTHORS

Amihay Hanany, Marcus Sperling

ABSTRACT

The Coulomb branch of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation. More... »

PAGES

16

References to SciGraph publications

  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-26. Charges of monopole operators in Chern-Simons Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 1972. Introduction to Lie Algebras and Representation Theory in NONE
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995. Lectures on Polytopes, Updated Seventh Printing of the First Edition in NONE
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1984. Lie Groups, Lie Algebras, and Their Representations in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2016)016

    DOI

    http://dx.doi.org/10.1007/jhep08(2016)016

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041675977


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Leibniz Universit\u00e4t Hannover, Appelstra\u00dfe 2, 30167, Hannover, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9122.8", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Leibniz Universit\u00e4t Hannover, Appelstra\u00dfe 2, 30167, Hannover, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8431-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034126804", 
              "https://doi.org/10.1007/978-1-4613-8431-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036695386", 
              "https://doi.org/10.1007/jhep01(2010)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1126-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012857639", 
              "https://doi.org/10.1007/978-1-4612-1126-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6398-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041581647", 
              "https://doi.org/10.1007/978-1-4612-6398-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-02", 
        "datePublishedReg": "2016-08-02", 
        "description": "The Coulomb branch of 3-dimensional N=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep08(2016)016", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6206399", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "gauge group", 
          "monopole operators", 
          "gauge theory", 
          "Hilbert series", 
          "weight lattice", 
          "conformal dimension", 
          "BPS monopole operators", 
          "Coulomb branch", 
          "chiral ring", 
          "finite set", 
          "Hilbert basis", 
          "minimal generators", 
          "efficient evaluation", 
          "operators", 
          "theory", 
          "novel interpretation", 
          "lattice", 
          "space", 
          "branches", 
          "generator", 
          "set", 
          "dimensions", 
          "properties", 
          "applications", 
          "intersection", 
          "technique", 
          "series", 
          "interpretation", 
          "ring", 
          "basis", 
          "bare", 
          "fans", 
          "collection", 
          "knowledge", 
          "evaluation", 
          "group", 
          "example", 
          "paper"
        ], 
        "name": "Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories", 
        "pagination": "16", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041675977"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2016)016"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2016)016", 
          "https://app.dimensions.ai/details/publication/pub.1041675977"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_694.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep08(2016)016"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      75 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2016)016 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N39e018c5f4084604afdcc52730174ae7
    4 schema:citation sg:pub.10.1007/978-1-4612-1126-6
    5 sg:pub.10.1007/978-1-4612-6398-2
    6 sg:pub.10.1007/978-1-4613-8431-1
    7 sg:pub.10.1007/jhep01(2010)110
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2015)150
    10 sg:pub.10.1007/jhep05(2011)015
    11 sg:pub.10.1007/jhep06(2010)100
    12 sg:pub.10.1007/jhep12(2014)103
    13 sg:pub.10.1007/jhep12(2015)118
    14 sg:pub.10.1088/1126-6708/2002/11/049
    15 sg:pub.10.1088/1126-6708/2002/12/044
    16 sg:pub.10.1088/1126-6708/2007/11/050
    17 schema:datePublished 2016-08-02
    18 schema:datePublishedReg 2016-08-02
    19 schema:description The Coulomb branch of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N4f109c8b061f400783641a56adfb8bdf
    23 N9b9290e5831b4b1b8dfcd95e9f94a3aa
    24 sg:journal.1052482
    25 schema:keywords BPS monopole operators
    26 Coulomb branch
    27 Hilbert basis
    28 Hilbert series
    29 applications
    30 bare
    31 basis
    32 branches
    33 chiral ring
    34 collection
    35 conformal dimension
    36 dimensions
    37 efficient evaluation
    38 evaluation
    39 example
    40 fans
    41 finite set
    42 gauge group
    43 gauge theory
    44 generator
    45 group
    46 interpretation
    47 intersection
    48 knowledge
    49 lattice
    50 minimal generators
    51 monopole operators
    52 novel interpretation
    53 operators
    54 paper
    55 properties
    56 ring
    57 series
    58 set
    59 space
    60 technique
    61 theory
    62 weight lattice
    63 schema:name Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories
    64 schema:pagination 16
    65 schema:productId N35179d67dd9b49229ab93b5029670515
    66 N987c62bd2a8e460ea760d2f6b8a131d4
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    68 https://doi.org/10.1007/jhep08(2016)016
    69 schema:sdDatePublished 2022-09-02T15:59
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N6799bb256c4240cea6757b642ff64dac
    72 schema:url https://doi.org/10.1007/jhep08(2016)016
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N35179d67dd9b49229ab93b5029670515 schema:name doi
    77 schema:value 10.1007/jhep08(2016)016
    78 rdf:type schema:PropertyValue
    79 N39e018c5f4084604afdcc52730174ae7 rdf:first sg:person.012155553275.80
    80 rdf:rest N95e508588be64c4fb0ee6f60674ce538
    81 N4f109c8b061f400783641a56adfb8bdf schema:issueNumber 8
    82 rdf:type schema:PublicationIssue
    83 N6799bb256c4240cea6757b642ff64dac schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N95e508588be64c4fb0ee6f60674ce538 rdf:first sg:person.013671173243.88
    86 rdf:rest rdf:nil
    87 N987c62bd2a8e460ea760d2f6b8a131d4 schema:name dimensions_id
    88 schema:value pub.1041675977
    89 rdf:type schema:PropertyValue
    90 N9b9290e5831b4b1b8dfcd95e9f94a3aa schema:volumeNumber 2016
    91 rdf:type schema:PublicationVolume
    92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mathematical Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Pure Mathematics
    97 rdf:type schema:DefinedTerm
    98 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)016
    99 rdf:type schema:MonetaryGrant
    100 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)016
    101 rdf:type schema:MonetaryGrant
    102 sg:grant.6206399 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)016
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1052482 schema:issn 1029-8479
    105 1126-6708
    106 schema:name Journal of High Energy Physics
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    110 schema:familyName Hanany
    111 schema:givenName Amihay
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    113 rdf:type schema:Person
    114 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.9122.8
    115 schema:familyName Sperling
    116 schema:givenName Marcus
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    118 rdf:type schema:Person
    119 sg:pub.10.1007/978-1-4612-1126-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857639
    120 https://doi.org/10.1007/978-1-4612-1126-6
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-1-4612-6398-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041581647
    123 https://doi.org/10.1007/978-1-4612-6398-2
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-1-4613-8431-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034126804
    126 https://doi.org/10.1007/978-1-4613-8431-1
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
    129 https://doi.org/10.1007/jhep01(2010)110
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    132 https://doi.org/10.1007/jhep01(2014)005
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    135 https://doi.org/10.1007/jhep01(2015)150
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    138 https://doi.org/10.1007/jhep05(2011)015
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    141 https://doi.org/10.1007/jhep06(2010)100
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    144 https://doi.org/10.1007/jhep12(2014)103
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    147 https://doi.org/10.1007/jhep12(2015)118
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    150 https://doi.org/10.1088/1126-6708/2002/11/049
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    153 https://doi.org/10.1088/1126-6708/2002/12/044
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    156 https://doi.org/10.1088/1126-6708/2007/11/050
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK
    159 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK
    160 rdf:type schema:Organization
    161 grid-institutes:grid.9122.8 schema:alternateName Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
    162 schema:name Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...