Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08

AUTHORS

Amihay Hanany, Marcus Sperling

ABSTRACT

The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation. More... »

PAGES

16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep08(2016)016

DOI

http://dx.doi.org/10.1007/jhep08(2016)016

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041675977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Leibniz Universit\u00e4t Hannover, Appelstra\u00dfe 2, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperling", 
        "givenName": "Marcus", 
        "id": "sg:person.013671173243.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep01(2014)005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004476555", 
          "https://doi.org/10.1007/jhep01(2014)005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023071", 
          "https://doi.org/10.1007/jhep12(2015)118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023071", 
          "https://doi.org/10.1007/jhep12(2015)118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1126-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012857639", 
          "https://doi.org/10.1007/978-1-4612-1126-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1126-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012857639", 
          "https://doi.org/10.1007/978-1-4612-1126-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703167", 
          "https://doi.org/10.1088/1126-6708/2007/11/050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415964", 
          "https://doi.org/10.1088/1126-6708/2002/12/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228754", 
          "https://doi.org/10.1088/1126-6708/2002/11/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8431-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034126804", 
          "https://doi.org/10.1007/978-1-4613-8431-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8431-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034126804", 
          "https://doi.org/10.1007/978-1-4613-8431-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2014)103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891425", 
          "https://doi.org/10.1007/jhep12(2014)103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1951-0044515-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040331643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6398-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041581647", 
          "https://doi.org/10.1007/978-1-4612-6398-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6398-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041581647", 
          "https://doi.org/10.1007/978-1-4612-6398-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.74.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.74.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2011)015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870432", 
          "https://doi.org/10.1007/jhep05(2011)015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048031409", 
          "https://doi.org/10.1007/jhep01(2015)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091500022914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054060968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.523225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058100245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep08(2016)016", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories", 
    "pagination": "16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c686ffcab585a71a34a00e2793b35255e39a019d67c8e0a14ff0ab491c2010da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep08(2016)016"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041675977"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep08(2016)016", 
      "https://app.dimensions.ai/details/publication/pub.1041675977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88255_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP08%282016%29016"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)016'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep08(2016)016 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb5072940ca084f2e8ac79a12b2ecdb27
4 schema:citation sg:pub.10.1007/978-1-4612-1126-6
5 sg:pub.10.1007/978-1-4612-6398-2
6 sg:pub.10.1007/978-1-4613-8431-1
7 sg:pub.10.1007/jhep01(2010)110
8 sg:pub.10.1007/jhep01(2014)005
9 sg:pub.10.1007/jhep01(2015)150
10 sg:pub.10.1007/jhep05(2011)015
11 sg:pub.10.1007/jhep06(2010)100
12 sg:pub.10.1007/jhep12(2014)103
13 sg:pub.10.1007/jhep12(2015)118
14 sg:pub.10.1088/1126-6708/2002/11/049
15 sg:pub.10.1088/1126-6708/2002/12/044
16 sg:pub.10.1088/1126-6708/2007/11/050
17 https://doi.org/10.1016/0550-3213(77)90221-8
18 https://doi.org/10.1016/0550-3213(78)90153-0
19 https://doi.org/10.1017/s0013091500022914
20 https://doi.org/10.1063/1.523225
21 https://doi.org/10.1090/s0002-9947-1951-0044515-0
22 https://doi.org/10.1103/physrevd.14.2728
23 https://doi.org/10.1103/physrevd.74.025005
24 https://doi.org/10.2307/2372597
25 https://doi.org/10.4310/atmp.2009.v13.n3.a5
26 schema:datePublished 2016-08
27 schema:datePublishedReg 2016-08-01
28 schema:description The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N819809a4dfe9419991a9e9433f8ec580
33 Nb5d4ddee0cd54a83b00f96bdaecfb7d2
34 sg:journal.1052482
35 schema:name Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories
36 schema:pagination 16
37 schema:productId N9fe75615b3f245b0a7a8afc6aa96fbca
38 Nb8aaba9a0d70434cae859d0443b6bbf2
39 Ndf85679274ae4da19c805d138867380b
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
41 https://doi.org/10.1007/jhep08(2016)016
42 schema:sdDatePublished 2019-04-11T13:11
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N53d8f6a28cd44c8884dae3e5610afdf9
45 schema:url https://link.springer.com/10.1007%2FJHEP08%282016%29016
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N53d8f6a28cd44c8884dae3e5610afdf9 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N710c124f5fc64c4291fdff1d4163e78b rdf:first sg:person.013671173243.88
52 rdf:rest rdf:nil
53 N819809a4dfe9419991a9e9433f8ec580 schema:volumeNumber 2016
54 rdf:type schema:PublicationVolume
55 N9fe75615b3f245b0a7a8afc6aa96fbca schema:name readcube_id
56 schema:value c686ffcab585a71a34a00e2793b35255e39a019d67c8e0a14ff0ab491c2010da
57 rdf:type schema:PropertyValue
58 Nb5072940ca084f2e8ac79a12b2ecdb27 rdf:first sg:person.012155553275.80
59 rdf:rest N710c124f5fc64c4291fdff1d4163e78b
60 Nb5d4ddee0cd54a83b00f96bdaecfb7d2 schema:issueNumber 8
61 rdf:type schema:PublicationIssue
62 Nb8aaba9a0d70434cae859d0443b6bbf2 schema:name dimensions_id
63 schema:value pub.1041675977
64 rdf:type schema:PropertyValue
65 Ndf85679274ae4da19c805d138867380b schema:name doi
66 schema:value 10.1007/jhep08(2016)016
67 rdf:type schema:PropertyValue
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)016
75 rdf:type schema:MonetaryGrant
76 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)016
77 rdf:type schema:MonetaryGrant
78 sg:journal.1052482 schema:issn 1029-8479
79 1126-6708
80 schema:name Journal of High Energy Physics
81 rdf:type schema:Periodical
82 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
83 schema:familyName Hanany
84 schema:givenName Amihay
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
86 rdf:type schema:Person
87 sg:person.013671173243.88 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
88 schema:familyName Sperling
89 schema:givenName Marcus
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4612-1126-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857639
93 https://doi.org/10.1007/978-1-4612-1126-6
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4612-6398-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041581647
96 https://doi.org/10.1007/978-1-4612-6398-2
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4613-8431-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034126804
99 https://doi.org/10.1007/978-1-4613-8431-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
102 https://doi.org/10.1007/jhep01(2010)110
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
105 https://doi.org/10.1007/jhep01(2014)005
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
108 https://doi.org/10.1007/jhep01(2015)150
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
111 https://doi.org/10.1007/jhep05(2011)015
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
114 https://doi.org/10.1007/jhep06(2010)100
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
117 https://doi.org/10.1007/jhep12(2014)103
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
120 https://doi.org/10.1007/jhep12(2015)118
121 rdf:type schema:CreativeWork
122 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
123 https://doi.org/10.1088/1126-6708/2002/11/049
124 rdf:type schema:CreativeWork
125 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
126 https://doi.org/10.1088/1126-6708/2002/12/044
127 rdf:type schema:CreativeWork
128 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
129 https://doi.org/10.1088/1126-6708/2007/11/050
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0550-3213(77)90221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399525
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0550-3213(78)90153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537713
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/s0013091500022914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054060968
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.523225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100245
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1090/s0002-9947-1951-0044515-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040331643
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevd.14.2728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684345
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevd.74.025005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736403
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/2372597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899243
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
150 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
153 schema:name Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...