A matrix model for WZW View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08

AUTHORS

Nick Dorey, David Tong, Carl Turner

ABSTRACT

We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework. More... »

PAGES

7

References to SciGraph publications

  • 1989-09. Quantum field theory and the Jones polynomial in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-02-25. A quantum Hall fluid of vortices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-07-06. Finite noncommutative Chern-Simons with a Wilson line and the quantum Hall effect in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-04. The Bethe Ansatz and the combinatorics of Young tableaux in JOURNAL OF SOVIET MATHEMATICS
  • 2009-07-30. Edge excitations of the Chern Simons matrix theory for the FQHE in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997-12. Kostka polynomials and energy functions in solvable lattice models in SELECTA MATHEMATICA
  • 1996-05. Crystallizing the spinon basis in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-04-07. Quantum Hall states as matrix Chern-Simons theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2016)007

    DOI

    http://dx.doi.org/10.1007/jhep08(2016)007

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016017622


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dorey", 
            "givenName": "Nick", 
            "id": "sg:person.015342326745.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342326745.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, UK", 
                "Department of Theoretical Physics, TIFR, Homi Bhabha Road, 400 005, Mumbai, India", 
                "Stanford Institute for Theoretical Physics, Via Pueblo, 94305, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tong", 
            "givenName": "David", 
            "id": "sg:person.0610206610.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610206610.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turner", 
            "givenName": "Carl", 
            "id": "sg:person.013310714755.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310714755.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001491961", 
              "https://doi.org/10.1088/1126-6708/2004/02/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/07/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003403287", 
              "https://doi.org/10.1088/1126-6708/2001/07/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003878513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003878513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008302962", 
              "https://doi.org/10.1088/1126-6708/2009/07/100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008302962", 
              "https://doi.org/10.1088/1126-6708/2009/07/100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000290050020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012372745", 
              "https://doi.org/10.1007/s000290050020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000290050020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012372745", 
              "https://doi.org/10.1007/s000290050020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01247088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017984059", 
              "https://doi.org/10.1007/bf01247088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035951", 
              "https://doi.org/10.1007/bf01217730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035951", 
              "https://doi.org/10.1007/bf01217730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02104914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033970340", 
              "https://doi.org/10.1007/bf02104914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02104914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033970340", 
              "https://doi.org/10.1007/bf02104914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/04/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042382506", 
              "https://doi.org/10.1088/1126-6708/2001/04/011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.53.13559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051103966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.53.13559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051103966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.5096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052377892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.5096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052377892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90402-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052393297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90402-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052393297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(91)90407-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052458791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(91)90407-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052458791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.36.5291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060544026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.36.5291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060544026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.41.12838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060553310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.41.12838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060553310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.235125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.235125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060648191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x96000201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062930499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217979292000840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062940518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptps.118.61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063142180"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08", 
        "datePublishedReg": "2016-08-01", 
        "description": "We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep08(2016)007", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3862553", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "name": "A matrix model for WZW", 
        "pagination": "7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4c523db8ba29daa937da83f01464774b6dd00bfb90ddd44b0f72aeb7ff92b15a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2016)007"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016017622"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2016)007", 
          "https://app.dimensions.ai/details/publication/pub.1016017622"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71673_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP08%282016%29007"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)007'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)007'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)007'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2016)007'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2016)007 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 schema:author Nb608eb6b2bfa4e8ab3bc03415d31f6e9
    4 schema:citation sg:pub.10.1007/bf01217730
    5 sg:pub.10.1007/bf01247088
    6 sg:pub.10.1007/bf02104914
    7 sg:pub.10.1007/s000290050020
    8 sg:pub.10.1088/1126-6708/2001/04/011
    9 sg:pub.10.1088/1126-6708/2001/07/006
    10 sg:pub.10.1088/1126-6708/2004/02/046
    11 sg:pub.10.1088/1126-6708/2009/07/100
    12 https://doi.org/10.1016/0550-3213(89)90436-7
    13 https://doi.org/10.1016/0550-3213(91)90407-o
    14 https://doi.org/10.1016/0550-3213(92)90402-w
    15 https://doi.org/10.1103/physrevb.36.5291
    16 https://doi.org/10.1103/physrevb.41.12838
    17 https://doi.org/10.1103/physrevb.53.13559
    18 https://doi.org/10.1103/physrevb.92.235125
    19 https://doi.org/10.1103/physrevlett.56.746
    20 https://doi.org/10.1103/physrevlett.82.5096
    21 https://doi.org/10.1142/s0217751x96000201
    22 https://doi.org/10.1142/s0217979292000840
    23 https://doi.org/10.1143/ptps.118.61
    24 schema:datePublished 2016-08
    25 schema:datePublishedReg 2016-08-01
    26 schema:description We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N8aa5890d88f84ec7b44db9e7e5c1d1d1
    31 Nef3d808d1f2a4801bcb91c0950eb66d0
    32 sg:journal.1052482
    33 schema:name A matrix model for WZW
    34 schema:pagination 7
    35 schema:productId N7a6434c1814f42daa4587eef9216ea36
    36 N922c2e8edc4c42859984806ad45dca81
    37 N984db2c0380a4470bce083c1c5c0e3c1
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016017622
    39 https://doi.org/10.1007/jhep08(2016)007
    40 schema:sdDatePublished 2019-04-11T12:56
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N191f22fca2e245d2b1aca0f7f30b8f1f
    43 schema:url https://link.springer.com/10.1007%2FJHEP08%282016%29007
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N191f22fca2e245d2b1aca0f7f30b8f1f schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N397e027d6c924731acef39f557286b74 rdf:first sg:person.013310714755.92
    50 rdf:rest rdf:nil
    51 N7a6434c1814f42daa4587eef9216ea36 schema:name doi
    52 schema:value 10.1007/jhep08(2016)007
    53 rdf:type schema:PropertyValue
    54 N8aa5890d88f84ec7b44db9e7e5c1d1d1 schema:issueNumber 8
    55 rdf:type schema:PublicationIssue
    56 N922c2e8edc4c42859984806ad45dca81 schema:name readcube_id
    57 schema:value 4c523db8ba29daa937da83f01464774b6dd00bfb90ddd44b0f72aeb7ff92b15a
    58 rdf:type schema:PropertyValue
    59 N984db2c0380a4470bce083c1c5c0e3c1 schema:name dimensions_id
    60 schema:value pub.1016017622
    61 rdf:type schema:PropertyValue
    62 Nb608eb6b2bfa4e8ab3bc03415d31f6e9 rdf:first sg:person.015342326745.04
    63 rdf:rest Nf67e257595074b41ab231ead2c03fb1f
    64 Nef3d808d1f2a4801bcb91c0950eb66d0 schema:volumeNumber 2016
    65 rdf:type schema:PublicationVolume
    66 Nf67e257595074b41ab231ead2c03fb1f rdf:first sg:person.0610206610.36
    67 rdf:rest N397e027d6c924731acef39f557286b74
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Physics
    73 rdf:type schema:DefinedTerm
    74 sg:grant.3862553 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep08(2016)007
    75 rdf:type schema:MonetaryGrant
    76 sg:journal.1052482 schema:issn 1029-8479
    77 1126-6708
    78 schema:name Journal of High Energy Physics
    79 rdf:type schema:Periodical
    80 sg:person.013310714755.92 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    81 schema:familyName Turner
    82 schema:givenName Carl
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310714755.92
    84 rdf:type schema:Person
    85 sg:person.015342326745.04 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    86 schema:familyName Dorey
    87 schema:givenName Nick
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342326745.04
    89 rdf:type schema:Person
    90 sg:person.0610206610.36 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    91 schema:familyName Tong
    92 schema:givenName David
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610206610.36
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf01217730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035951
    96 https://doi.org/10.1007/bf01217730
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01247088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984059
    99 https://doi.org/10.1007/bf01247088
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf02104914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033970340
    102 https://doi.org/10.1007/bf02104914
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s000290050020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012372745
    105 https://doi.org/10.1007/s000290050020
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1088/1126-6708/2001/04/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042382506
    108 https://doi.org/10.1088/1126-6708/2001/04/011
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1088/1126-6708/2001/07/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003403287
    111 https://doi.org/10.1088/1126-6708/2001/07/006
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1088/1126-6708/2004/02/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001491961
    114 https://doi.org/10.1088/1126-6708/2004/02/046
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1088/1126-6708/2009/07/100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008302962
    117 https://doi.org/10.1088/1126-6708/2009/07/100
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0550-3213(89)90436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878513
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0550-3213(91)90407-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052458791
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0550-3213(92)90402-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1052393297
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevb.36.5291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060544026
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevb.41.12838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553310
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevb.53.13559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051103966
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevb.92.235125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648191
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevlett.56.746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793572
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevlett.82.5096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377892
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1142/s0217751x96000201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062930499
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1142/s0217979292000840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062940518
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1143/ptps.118.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063142180
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    144 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, UK
    145 Department of Theoretical Physics, TIFR, Homi Bhabha Road, 400 005, Mumbai, India
    146 Stanford Institute for Theoretical Physics, Via Pueblo, 94305, Stanford, CA, USA
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    149 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 OWA, Cambridge, UK
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...