Quarter-BPS AdS5 solutions in M-theory with a T2 bundle over a Riemann surface View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-08-30

AUTHORS

Ibrahima Bah

ABSTRACT

We study and classify quarter-BPS AdS5 systems in M-theory, whose internal six-dimensional geometry is a T2 bundle over a Riemann surface and two interval directions. The general system presented, provides a unified description of all known AdS5 solutions in M-theory. These systems are governed by two functions, one that corresponds to the conformal factor of the Riemann surface and another that describes the T2 fibration. We find a special set of solutions that can be organized into two classes. In the first one, solutions are specified by the conformal factor of the Riemann surface which satisfies a warped generalization of the SU(∞) Toda equation. The system in the second class requires the Riemann surface to be S2, H2 or T2. Class one contains the M-theory AdS5 solutions of Lin, Lunin and Maldacena; the solutions of Maldacena and Núñez; the solutions of Gauntlett, Martelli, Sparks and Waldram; and the eleven-dimensional uplift of the Yp,q metrics. The second includes the recently found solutions of Beem, Bobev, Wecht and the author. Within each class there are new solutions that will be studied in a companion paper. More... »

PAGES

137

References to SciGraph publications

  • 2012-09-26. N = 2 generalized superconformal quiver gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2009-09-18. New Seiberg dualities from 𝒩 = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-17. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-10-12. Bubbling AdS space and 1/2 BPS geometries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-05. curves for trifundamentals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-12-05. Beyond LLM in M-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06-01. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-03. Two-dimensional SCFTs from wrapped branes and c-extremization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-05. Brane webs and 1/4-BPS geometries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-02-22. D = 5 SU(2) × U(1) gauged supergravity from D = 11 supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-04. On the generality of the LLM geometries in M-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-11-22. AdS spacetimes from wrapped M5 branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-02. Seiberg-Witten geometries revisited in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-09. Topological quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-10-30. The gravity duals of superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-21. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep08(2013)137

    DOI

    http://dx.doi.org/10.1007/jhep08(2013)137

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044208279


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Physique Th\u00e9orique, CEA/ Saclay, 91191, Gif-sur-Yvette Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.457334.2", 
              "name": [
                "Institut de Physique Th\u00e9orique, CEA/ Saclay, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bah", 
            "givenName": "Ibrahima", 
            "id": "sg:person.01172413717.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172413717.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001669470", 
              "https://doi.org/10.1007/jhep06(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016000698", 
              "https://doi.org/10.1088/1126-6708/2008/02/083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2012)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015095920", 
              "https://doi.org/10.1007/jhep12(2012)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051900430", 
              "https://doi.org/10.1007/jhep09(2011)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013614901", 
              "https://doi.org/10.1007/jhep04(2011)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/11/053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005048349", 
              "https://doi.org/10.1088/1126-6708/2006/11/053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051586061", 
              "https://doi.org/10.1007/jhep06(2013)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2012)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014653824", 
              "https://doi.org/10.1007/jhep09(2012)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007483572", 
              "https://doi.org/10.1007/jhep07(2011)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002704291", 
              "https://doi.org/10.1007/bf01223371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532912", 
              "https://doi.org/10.1007/jhep07(2013)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/10/025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019853401", 
              "https://doi.org/10.1088/1126-6708/2004/10/025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049101538", 
              "https://doi.org/10.1088/1126-6708/2008/09/028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010897089", 
              "https://doi.org/10.1007/jhep10(2012)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018116770", 
              "https://doi.org/10.1088/1126-6708/2009/09/086"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08-30", 
        "datePublishedReg": "2013-08-30", 
        "description": "We study and classify quarter-BPS AdS5 systems in M-theory, whose internal six-dimensional geometry is a T2 bundle over a Riemann surface and two interval directions. The general system presented, provides a unified description of all known AdS5 solutions in M-theory. These systems are governed by two functions, one that corresponds to the conformal factor of the Riemann surface and another that describes the T2 fibration. We find a special set of solutions that can be organized into two classes. In the first one, solutions are specified by the conformal factor of the Riemann surface which satisfies a warped generalization of the SU(\u221e) Toda equation. The system in the second class requires the Riemann surface to be S2, H2 or T2. Class one contains the M-theory AdS5 solutions of Lin, Lunin and Maldacena; the solutions of Maldacena and N\u00fa\u00f1ez; the solutions of Gauntlett, Martelli, Sparks and Waldram; and the eleven-dimensional uplift of the Yp,q metrics. The second includes the recently found solutions of Beem, Bobev, Wecht and the author. Within each class there are new solutions that will be studied in a companion paper.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep08(2013)137", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "Riemann surface", 
          "AdS5 solutions", 
          "M-theory", 
          "conformal factor", 
          "T2 bundle", 
          "T2 fibrations", 
          "Toda equation", 
          "unified description", 
          "general system", 
          "Maldacena", 
          "q-metric", 
          "companion paper", 
          "special set", 
          "new solutions", 
          "class one", 
          "second class", 
          "solution", 
          "Bobev", 
          "class", 
          "equations", 
          "fibration", 
          "Lunin", 
          "Gauntlett", 
          "Wecht", 
          "generalization", 
          "Martelli", 
          "Waldram", 
          "geometry", 
          "system", 
          "N\u00fa\u00f1ez", 
          "description", 
          "set", 
          "BEEM", 
          "bundles", 
          "metrics", 
          "Lin", 
          "interval direction", 
          "surface", 
          "function", 
          "direction", 
          "one", 
          "Yp", 
          "S2", 
          "Spark", 
          "authors", 
          "T2", 
          "H2", 
          "factors", 
          "uplift", 
          "paper"
        ], 
        "name": "Quarter-BPS AdS5 solutions in M-theory with a T2 bundle over a Riemann surface", 
        "pagination": "137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044208279"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep08(2013)137"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep08(2013)137", 
          "https://app.dimensions.ai/details/publication/pub.1044208279"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_600.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep08(2013)137"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2013)137'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2013)137'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2013)137'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep08(2013)137'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      93 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep08(2013)137 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N96f3982fd2d84a7c81fd921db4c295d5
    4 schema:citation sg:pub.10.1007/bf01223371
    5 sg:pub.10.1007/jhep01(2010)088
    6 sg:pub.10.1007/jhep04(2011)002
    7 sg:pub.10.1007/jhep06(2012)005
    8 sg:pub.10.1007/jhep06(2013)005
    9 sg:pub.10.1007/jhep07(2011)025
    10 sg:pub.10.1007/jhep07(2013)107
    11 sg:pub.10.1007/jhep08(2012)034
    12 sg:pub.10.1007/jhep09(2011)010
    13 sg:pub.10.1007/jhep09(2012)127
    14 sg:pub.10.1007/jhep10(2012)189
    15 sg:pub.10.1007/jhep11(2010)099
    16 sg:pub.10.1007/jhep12(2012)023
    17 sg:pub.10.1007/s11005-010-0369-5
    18 sg:pub.10.1088/1126-6708/2004/10/025
    19 sg:pub.10.1088/1126-6708/2006/11/053
    20 sg:pub.10.1088/1126-6708/2008/02/083
    21 sg:pub.10.1088/1126-6708/2008/09/028
    22 sg:pub.10.1088/1126-6708/2009/09/086
    23 schema:datePublished 2013-08-30
    24 schema:datePublishedReg 2013-08-30
    25 schema:description We study and classify quarter-BPS AdS5 systems in M-theory, whose internal six-dimensional geometry is a T2 bundle over a Riemann surface and two interval directions. The general system presented, provides a unified description of all known AdS5 solutions in M-theory. These systems are governed by two functions, one that corresponds to the conformal factor of the Riemann surface and another that describes the T2 fibration. We find a special set of solutions that can be organized into two classes. In the first one, solutions are specified by the conformal factor of the Riemann surface which satisfies a warped generalization of the SU(∞) Toda equation. The system in the second class requires the Riemann surface to be S2, H2 or T2. Class one contains the M-theory AdS5 solutions of Lin, Lunin and Maldacena; the solutions of Maldacena and Núñez; the solutions of Gauntlett, Martelli, Sparks and Waldram; and the eleven-dimensional uplift of the Yp,q metrics. The second includes the recently found solutions of Beem, Bobev, Wecht and the author. Within each class there are new solutions that will be studied in a companion paper.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf Nc64c22a7524b42278dc5b36ae187b475
    29 Nf0e147fd0c8f418cb99be222f7ad4997
    30 sg:journal.1052482
    31 schema:keywords AdS5 solutions
    32 BEEM
    33 Bobev
    34 Gauntlett
    35 H2
    36 Lin
    37 Lunin
    38 M-theory
    39 Maldacena
    40 Martelli
    41 Núñez
    42 Riemann surface
    43 S2
    44 Spark
    45 T2
    46 T2 bundle
    47 T2 fibrations
    48 Toda equation
    49 Waldram
    50 Wecht
    51 Yp
    52 authors
    53 bundles
    54 class
    55 class one
    56 companion paper
    57 conformal factor
    58 description
    59 direction
    60 equations
    61 factors
    62 fibration
    63 function
    64 general system
    65 generalization
    66 geometry
    67 interval direction
    68 metrics
    69 new solutions
    70 one
    71 paper
    72 q-metric
    73 second class
    74 set
    75 solution
    76 special set
    77 surface
    78 system
    79 unified description
    80 uplift
    81 schema:name Quarter-BPS AdS5 solutions in M-theory with a T2 bundle over a Riemann surface
    82 schema:pagination 137
    83 schema:productId N04298cedfdd04c54a89713da37a13428
    84 Na195d6f690924f91b389dc46bf6f55f2
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044208279
    86 https://doi.org/10.1007/jhep08(2013)137
    87 schema:sdDatePublished 2022-09-02T15:56
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N240e5c4cfba74e3294bf2ca5e4da3ed1
    90 schema:url https://doi.org/10.1007/jhep08(2013)137
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N04298cedfdd04c54a89713da37a13428 schema:name doi
    95 schema:value 10.1007/jhep08(2013)137
    96 rdf:type schema:PropertyValue
    97 N240e5c4cfba74e3294bf2ca5e4da3ed1 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 N96f3982fd2d84a7c81fd921db4c295d5 rdf:first sg:person.01172413717.13
    100 rdf:rest rdf:nil
    101 Na195d6f690924f91b389dc46bf6f55f2 schema:name dimensions_id
    102 schema:value pub.1044208279
    103 rdf:type schema:PropertyValue
    104 Nc64c22a7524b42278dc5b36ae187b475 schema:issueNumber 8
    105 rdf:type schema:PublicationIssue
    106 Nf0e147fd0c8f418cb99be222f7ad4997 schema:volumeNumber 2013
    107 rdf:type schema:PublicationVolume
    108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Mathematical Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Pure Mathematics
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1052482 schema:issn 1029-8479
    115 1126-6708
    116 schema:name Journal of High Energy Physics
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.01172413717.13 schema:affiliation grid-institutes:grid.457334.2
    120 schema:familyName Bah
    121 schema:givenName Ibrahima
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172413717.13
    123 rdf:type schema:Person
    124 sg:pub.10.1007/bf01223371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002704291
    125 https://doi.org/10.1007/bf01223371
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    128 https://doi.org/10.1007/jhep01(2010)088
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep04(2011)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013614901
    131 https://doi.org/10.1007/jhep04(2011)002
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
    134 https://doi.org/10.1007/jhep06(2012)005
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep06(2013)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586061
    137 https://doi.org/10.1007/jhep06(2013)005
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep07(2011)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007483572
    140 https://doi.org/10.1007/jhep07(2011)025
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
    143 https://doi.org/10.1007/jhep07(2013)107
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    146 https://doi.org/10.1007/jhep08(2012)034
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep09(2011)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051900430
    149 https://doi.org/10.1007/jhep09(2011)010
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep09(2012)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653824
    152 https://doi.org/10.1007/jhep09(2012)127
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep10(2012)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010897089
    155 https://doi.org/10.1007/jhep10(2012)189
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    158 https://doi.org/10.1007/jhep11(2010)099
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep12(2012)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015095920
    161 https://doi.org/10.1007/jhep12(2012)023
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    164 https://doi.org/10.1007/s11005-010-0369-5
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1088/1126-6708/2004/10/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019853401
    167 https://doi.org/10.1088/1126-6708/2004/10/025
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1088/1126-6708/2006/11/053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005048349
    170 https://doi.org/10.1088/1126-6708/2006/11/053
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1088/1126-6708/2008/02/083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016000698
    173 https://doi.org/10.1088/1126-6708/2008/02/083
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1088/1126-6708/2008/09/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049101538
    176 https://doi.org/10.1088/1126-6708/2008/09/028
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
    179 https://doi.org/10.1088/1126-6708/2009/09/086
    180 rdf:type schema:CreativeWork
    181 grid-institutes:grid.457334.2 schema:alternateName Institut de Physique Théorique, CEA/ Saclay, 91191, Gif-sur-Yvette Cedex, France
    182 schema:name Institut de Physique Théorique, CEA/ Saclay, 91191, Gif-sur-Yvette Cedex, France
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...