Partial implosions and quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-08

AUTHORS

Antoine Bourget, Andrew Dancer, Julius F. Grimminger, Amihay Hanany, Zhenghao Zhong

ABSTRACT

We propose magnetic quivers for partial implosion spaces. Such partial implosions involve a choice of parabolic subgroup, with the Borel subgroup corresponding to the standard implosion. In the subregular case we test the conjecture by verifying that reduction by the Levi group gives the appropriate nilpotent orbit closure. In the case of a parabolic corresponding to a hook diagram we are also able to carry out this verification provided we work at nonzero Fayet-Iliopoulos parameters. More... »

PAGES

49

References to SciGraph publications

  • 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-11. Symplectic implosion and nonreductive quotients in GEOMETRIC ASPECTS OF ANALYSIS AND MECHANICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-11-26. Redeeming bad theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2021-08-03. Orthosymplectic implosions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-12. Hyperkähler metrics and supersymmetry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2022)049

    DOI

    http://dx.doi.org/10.1007/jhep07(2022)049

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149358634


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Physique de l\u2019Ecole normale sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 de Paris, F-75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.462608.e", 
              "name": [
                "Universit\u00e9 Paris-Saclay, CNRS, CEA, Institut de physique th\u00e9orique, 91191, Gif-sur-Yvette, France", 
                "Laboratoire de Physique de l\u2019Ecole normale sup\u00e9rieure, ENS, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 de Paris, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourget", 
            "givenName": "Antoine", 
            "id": "sg:person.012105771151.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jesus College, Oxford University, OX1 3DW, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Jesus College, Oxford University, OX1 3DW, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dancer", 
            "givenName": "Andrew", 
            "id": "sg:person.011737713663.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737713663.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimminger", 
            "givenName": "Julius F.", 
            "id": "sg:person.012432740125.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhong", 
            "givenName": "Zhenghao", 
            "id": "sg:person.014651311720.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133541670", 
              "https://doi.org/10.1007/jhep12(2020)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2021)012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140156935", 
              "https://doi.org/10.1007/jhep08(2021)012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027167895", 
              "https://doi.org/10.1007/jhep11(2013)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052766039", 
              "https://doi.org/10.1007/bf01214418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-8244-6_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026447086", 
              "https://doi.org/10.1007/978-0-8176-8244-6_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124331365", 
              "https://doi.org/10.1007/jhep01(2020)157"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-08", 
        "datePublishedReg": "2022-07-08", 
        "description": "We propose magnetic quivers for partial implosion spaces. Such partial implosions involve a choice of parabolic subgroup, with the Borel subgroup corresponding to the standard implosion. In the subregular case we test the conjecture by verifying that reduction by the Levi group gives the appropriate nilpotent orbit closure. In the case of a parabolic corresponding to a hook diagram we are also able to carry out this verification provided we work at nonzero Fayet-Iliopoulos parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep07(2022)049", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2022"
          }
        ], 
        "keywords": [
          "nilpotent orbit closures", 
          "Fayet-Iliopoulos parameters", 
          "magnetic quivers", 
          "Borel subgroup", 
          "parabolic subgroup", 
          "orbit closures", 
          "quivers", 
          "conjecture", 
          "parabolic", 
          "space", 
          "implosion", 
          "diagram", 
          "parameters", 
          "cases", 
          "verification", 
          "choice", 
          "subgroups", 
          "closure", 
          "reduction", 
          "group"
        ], 
        "name": "Partial implosions and quivers", 
        "pagination": "49", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149358634"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2022)049"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2022)049", 
          "https://app.dimensions.ai/details/publication/pub.1149358634"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep07(2022)049"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2022)049'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2022)049'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2022)049'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2022)049'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      54 URIs      36 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2022)049 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2f0f9822dd0c4e0e84c8c038154c92d4
    4 schema:citation sg:pub.10.1007/978-0-8176-8244-6_9
    5 sg:pub.10.1007/bf01214418
    6 sg:pub.10.1007/jhep01(2014)005
    7 sg:pub.10.1007/jhep01(2020)157
    8 sg:pub.10.1007/jhep06(2016)130
    9 sg:pub.10.1007/jhep07(2020)204
    10 sg:pub.10.1007/jhep08(2021)012
    11 sg:pub.10.1007/jhep11(2013)189
    12 sg:pub.10.1007/jhep12(2020)092
    13 sg:pub.10.1007/s00220-017-2903-0
    14 schema:datePublished 2022-07-08
    15 schema:datePublishedReg 2022-07-08
    16 schema:description We propose magnetic quivers for partial implosion spaces. Such partial implosions involve a choice of parabolic subgroup, with the Borel subgroup corresponding to the standard implosion. In the subregular case we test the conjecture by verifying that reduction by the Levi group gives the appropriate nilpotent orbit closure. In the case of a parabolic corresponding to a hook diagram we are also able to carry out this verification provided we work at nonzero Fayet-Iliopoulos parameters.
    17 schema:genre article
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N03ca5a95ce7c4ac7a9b6a3555a7e3937
    20 N0639eed80b734061a79753f7ad070b12
    21 sg:journal.1052482
    22 schema:keywords Borel subgroup
    23 Fayet-Iliopoulos parameters
    24 cases
    25 choice
    26 closure
    27 conjecture
    28 diagram
    29 group
    30 implosion
    31 magnetic quivers
    32 nilpotent orbit closures
    33 orbit closures
    34 parabolic
    35 parabolic subgroup
    36 parameters
    37 quivers
    38 reduction
    39 space
    40 subgroups
    41 verification
    42 schema:name Partial implosions and quivers
    43 schema:pagination 49
    44 schema:productId N1ddf2a4689234b22b31c3a0e6417e952
    45 Nfc8abcff79244aa886bbce925dc302e9
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149358634
    47 https://doi.org/10.1007/jhep07(2022)049
    48 schema:sdDatePublished 2022-09-02T16:07
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N626c9db5532c4cd9b411100bf17c9ef1
    51 schema:url https://doi.org/10.1007/jhep07(2022)049
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N03ca5a95ce7c4ac7a9b6a3555a7e3937 schema:volumeNumber 2022
    56 rdf:type schema:PublicationVolume
    57 N0639eed80b734061a79753f7ad070b12 schema:issueNumber 7
    58 rdf:type schema:PublicationIssue
    59 N1ddf2a4689234b22b31c3a0e6417e952 schema:name doi
    60 schema:value 10.1007/jhep07(2022)049
    61 rdf:type schema:PropertyValue
    62 N2f0f9822dd0c4e0e84c8c038154c92d4 rdf:first sg:person.012105771151.34
    63 rdf:rest N75f386c0b8ed4e77ae5fce092205bb8e
    64 N626c9db5532c4cd9b411100bf17c9ef1 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N75f386c0b8ed4e77ae5fce092205bb8e rdf:first sg:person.011737713663.96
    67 rdf:rest Nf2cedcedb25a4b6c970bc0a3af2e209b
    68 Nb5166d7187f7442790da729faf154619 rdf:first sg:person.012155553275.80
    69 rdf:rest Ncbe2888bf0ae472397092c043a0d2af0
    70 Ncbe2888bf0ae472397092c043a0d2af0 rdf:first sg:person.014651311720.05
    71 rdf:rest rdf:nil
    72 Nf2cedcedb25a4b6c970bc0a3af2e209b rdf:first sg:person.012432740125.61
    73 rdf:rest Nb5166d7187f7442790da729faf154619
    74 Nfc8abcff79244aa886bbce925dc302e9 schema:name dimensions_id
    75 schema:value pub.1149358634
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1052482 schema:issn 1029-8479
    84 1126-6708
    85 schema:name Journal of High Energy Physics
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.011737713663.96 schema:affiliation grid-institutes:grid.4991.5
    89 schema:familyName Dancer
    90 schema:givenName Andrew
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737713663.96
    92 rdf:type schema:Person
    93 sg:person.012105771151.34 schema:affiliation grid-institutes:grid.462608.e
    94 schema:familyName Bourget
    95 schema:givenName Antoine
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34
    97 rdf:type schema:Person
    98 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    99 schema:familyName Hanany
    100 schema:givenName Amihay
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    102 rdf:type schema:Person
    103 sg:person.012432740125.61 schema:affiliation grid-institutes:grid.7445.2
    104 schema:familyName Grimminger
    105 schema:givenName Julius F.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61
    107 rdf:type schema:Person
    108 sg:person.014651311720.05 schema:affiliation grid-institutes:grid.7445.2
    109 schema:familyName Zhong
    110 schema:givenName Zhenghao
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05
    112 rdf:type schema:Person
    113 sg:pub.10.1007/978-0-8176-8244-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026447086
    114 https://doi.org/10.1007/978-0-8176-8244-6_9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01214418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766039
    117 https://doi.org/10.1007/bf01214418
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    120 https://doi.org/10.1007/jhep01(2014)005
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
    123 https://doi.org/10.1007/jhep01(2020)157
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    126 https://doi.org/10.1007/jhep06(2016)130
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    129 https://doi.org/10.1007/jhep07(2020)204
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep08(2021)012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140156935
    132 https://doi.org/10.1007/jhep08(2021)012
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep11(2013)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167895
    135 https://doi.org/10.1007/jhep11(2013)189
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
    138 https://doi.org/10.1007/jhep12(2020)092
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    141 https://doi.org/10.1007/s00220-017-2903-0
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.462608.e schema:alternateName Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
    144 schema:name Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
    145 Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
    146 rdf:type schema:Organization
    147 grid-institutes:grid.4991.5 schema:alternateName Jesus College, Oxford University, OX1 3DW, Oxford, UK
    148 schema:name Jesus College, Oxford University, OX1 3DW, Oxford, UK
    149 rdf:type schema:Organization
    150 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK
    151 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, UK
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...