Discrete gauging in six dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07-26

AUTHORS

Amihay Hanany, Gabi Zafrir

ABSTRACT

When n M5 branes coincide on an A type singularity, ℂ2/ℤk, there is a multitude of tensionless strings which arise in the spectrum. The low energy theory when all M5 branes are separated at the singularity is given by a linear quiver with parameters n and k. The theory has a multitude of phases, as many as partitions of n, each characterized by a different Higgs branch. Each such Higgs branch can be described by a Coulomb branch of a 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver. For example, at finite coupling, when all branes are separated, the quiver has a bouquet of n U(1) nodes connected to a single node. There is a natural discrete non Abelian Sn global symmetry which acts in the theory by permuting n identical objects. It acts in particular on the Higgs branch at the above finite coupling phase. It is conjectured that at the coincident point this discrete Sn flavor symmetry is gauged, and at partial coincidence the corresponding subgroup of Sn is gauged. This elegant and simple effect solves several problems which are raised recently on the physics of multiple M5 branes on an A type singularity. Similar results on multitude of phases are concluded for a system of n M5 branes on an A type singularity next to an M9 plane. More... »

PAGES

168

References to SciGraph publications

  • 2015-12-23. Brane webs, 5d gauge theories and 6dN=1,0 SCFT’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. E8 instantons on type-A ALE spaces and supersymmetric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 1978-10. Polarizations in the classical groups in MATHEMATISCHE ZEITSCHRIFT
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-03-21. Branes at orbifolds versus Hanany Witten in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04-23. On mirror symmetry in three dimensional Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-06. 6d N=10 theories on T2 and class S theories. Part I in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-15. Tri-vertices and SU(2)’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-07-07. Issues on orientifolds: on the brane construction of gauge theories with SO(2n) global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-04. S1/T2 compactifications of 6d N=1,0 theories and brane webs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-05. 4d N=1 from 6d N=10 on a torus with fluxes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-19. A new 5d description of 6d D-type minimal conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-10. 6d Conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2018)168

    DOI

    http://dx.doi.org/10.1007/jhep07(2018)168

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105875050


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zafrir", 
            "givenName": "Gabi", 
            "id": "sg:person.012335454247.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335454247.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/1998/03/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049975593", 
              "https://doi.org/10.1088/1126-6708/1998/03/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022076696", 
              "https://doi.org/10.1007/jhep02(2015)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004298067", 
              "https://doi.org/10.1007/jhep08(2015)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038390804", 
              "https://doi.org/10.1007/jhep03(2016)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187336", 
              "https://doi.org/10.1007/jhep02(2011)069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2017)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085886140", 
              "https://doi.org/10.1007/jhep06(2017)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01237035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052704641", 
              "https://doi.org/10.1007/bf01237035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014226650", 
              "https://doi.org/10.1007/jhep12(2015)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092002758", 
              "https://doi.org/10.1007/jhep09(2017)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037227102", 
              "https://doi.org/10.1007/jhep07(2015)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/07/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018492151", 
              "https://doi.org/10.1088/1126-6708/1999/07/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001667186", 
              "https://doi.org/10.1088/1126-6708/1999/04/021"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-26", 
        "datePublishedReg": "2018-07-26", 
        "description": "When n M5 branes coincide on an A type singularity, \u21022/\u2124k, there is a multitude of tensionless strings which arise in the spectrum. The low energy theory when all M5 branes are separated at the singularity is given by a linear quiver with parameters n and k. The theory has a multitude of phases, as many as partitions of n, each characterized by a different Higgs branch. Each such Higgs branch can be described by a Coulomb branch of a 3d N=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} quiver. For example, at finite coupling, when all branes are separated, the quiver has a bouquet of n U(1) nodes connected to a single node. There is a natural discrete non Abelian Sn global symmetry which acts in the theory by permuting n identical objects. It acts in particular on the Higgs branch at the above finite coupling phase. It is conjectured that at the coincident point this discrete Sn flavor symmetry is gauged, and at partial coincidence the corresponding subgroup of Sn is gauged. This elegant and simple effect solves several problems which are raised recently on the physics of multiple M5 branes on an A type singularity. Similar results on multitude of phases are concluded for a system of n M5 branes on an A type singularity next to an M9 plane.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep07(2018)168", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "Higgs branch", 
          "M5-branes", 
          "type singularity", 
          "multitude of phases", 
          "multiple M5-branes", 
          "low-energy theory", 
          "N M5 branes", 
          "tensionless strings", 
          "finite coupling", 
          "global symmetry", 
          "Coulomb branch", 
          "linear quivers", 
          "singularity", 
          "brane", 
          "discrete gauging", 
          "parameter n", 
          "quivers", 
          "flavor symmetry", 
          "coincident points", 
          "energy theory", 
          "theory", 
          "symmetry", 
          "M9 plane", 
          "coupling phase", 
          "single node", 
          "physics", 
          "corresponding subgroups", 
          "partial coincidence", 
          "gauging", 
          "branches", 
          "string", 
          "identical objects", 
          "problem", 
          "nodes", 
          "coincide", 
          "coupling", 
          "partition", 
          "simple effects", 
          "plane", 
          "dimensions", 
          "objects", 
          "point", 
          "similar results", 
          "phase", 
          "system", 
          "coincidence", 
          "spectra", 
          "multitude", 
          "results", 
          "Sn", 
          "effect", 
          "subgroups", 
          "bouquet", 
          "example"
        ], 
        "name": "Discrete gauging in six dimensions", 
        "pagination": "168", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105875050"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2018)168"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2018)168", 
          "https://app.dimensions.ai/details/publication/pub.1105875050"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_759.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep07(2018)168"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)168'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)168'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)168'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)168'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      21 PREDICATES      105 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2018)168 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b911f00b55b4ca4a9f697a5c51ee5f7
    4 schema:citation sg:pub.10.1007/bf01237035
    5 sg:pub.10.1007/jhep01(2014)005
    6 sg:pub.10.1007/jhep02(2011)069
    7 sg:pub.10.1007/jhep02(2015)054
    8 sg:pub.10.1007/jhep03(2016)024
    9 sg:pub.10.1007/jhep04(2017)042
    10 sg:pub.10.1007/jhep04(2018)127
    11 sg:pub.10.1007/jhep05(2012)145
    12 sg:pub.10.1007/jhep06(2010)100
    13 sg:pub.10.1007/jhep06(2016)130
    14 sg:pub.10.1007/jhep06(2017)022
    15 sg:pub.10.1007/jhep07(2015)014
    16 sg:pub.10.1007/jhep07(2018)061
    17 sg:pub.10.1007/jhep08(2012)034
    18 sg:pub.10.1007/jhep08(2015)097
    19 sg:pub.10.1007/jhep09(2010)063
    20 sg:pub.10.1007/jhep09(2014)185
    21 sg:pub.10.1007/jhep09(2017)144
    22 sg:pub.10.1007/jhep10(2014)152
    23 sg:pub.10.1007/jhep11(2016)175
    24 sg:pub.10.1007/jhep11(2017)126
    25 sg:pub.10.1007/jhep12(2015)157
    26 sg:pub.10.1088/1126-6708/1998/03/003
    27 sg:pub.10.1088/1126-6708/1999/04/021
    28 sg:pub.10.1088/1126-6708/1999/07/009
    29 sg:pub.10.1088/1126-6708/2007/11/050
    30 sg:pub.10.1088/1126-6708/2009/09/052
    31 schema:datePublished 2018-07-26
    32 schema:datePublishedReg 2018-07-26
    33 schema:description When n M5 branes coincide on an A type singularity, ℂ2/ℤk, there is a multitude of tensionless strings which arise in the spectrum. The low energy theory when all M5 branes are separated at the singularity is given by a linear quiver with parameters n and k. The theory has a multitude of phases, as many as partitions of n, each characterized by a different Higgs branch. Each such Higgs branch can be described by a Coulomb branch of a 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver. For example, at finite coupling, when all branes are separated, the quiver has a bouquet of n U(1) nodes connected to a single node. There is a natural discrete non Abelian Sn global symmetry which acts in the theory by permuting n identical objects. It acts in particular on the Higgs branch at the above finite coupling phase. It is conjectured that at the coincident point this discrete Sn flavor symmetry is gauged, and at partial coincidence the corresponding subgroup of Sn is gauged. This elegant and simple effect solves several problems which are raised recently on the physics of multiple M5 branes on an A type singularity. Similar results on multitude of phases are concluded for a system of n M5 branes on an A type singularity next to an M9 plane.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N17864b8c355249b1b00486fe7eaf53ad
    37 Nb388275ac0e24703b7e173d998abbda1
    38 sg:journal.1052482
    39 schema:keywords Coulomb branch
    40 Higgs branch
    41 M5-branes
    42 M9 plane
    43 N M5 branes
    44 Sn
    45 bouquet
    46 branches
    47 brane
    48 coincide
    49 coincidence
    50 coincident points
    51 corresponding subgroups
    52 coupling
    53 coupling phase
    54 dimensions
    55 discrete gauging
    56 effect
    57 energy theory
    58 example
    59 finite coupling
    60 flavor symmetry
    61 gauging
    62 global symmetry
    63 identical objects
    64 linear quivers
    65 low-energy theory
    66 multiple M5-branes
    67 multitude
    68 multitude of phases
    69 nodes
    70 objects
    71 parameter n
    72 partial coincidence
    73 partition
    74 phase
    75 physics
    76 plane
    77 point
    78 problem
    79 quivers
    80 results
    81 similar results
    82 simple effects
    83 single node
    84 singularity
    85 spectra
    86 string
    87 subgroups
    88 symmetry
    89 system
    90 tensionless strings
    91 theory
    92 type singularity
    93 schema:name Discrete gauging in six dimensions
    94 schema:pagination 168
    95 schema:productId N8eec589894f141688fe7af8d59d67154
    96 Nc21a26b68a1e459e957a3687a8c35f44
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    98 https://doi.org/10.1007/jhep07(2018)168
    99 schema:sdDatePublished 2022-10-01T06:43
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Nf62ced8496c2409da8215b090d33b6a0
    102 schema:url https://doi.org/10.1007/jhep07(2018)168
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N17864b8c355249b1b00486fe7eaf53ad schema:volumeNumber 2018
    107 rdf:type schema:PublicationVolume
    108 N3b911f00b55b4ca4a9f697a5c51ee5f7 rdf:first sg:person.012155553275.80
    109 rdf:rest N8f7494e25e934720ab3fa058bee8f2a9
    110 N8eec589894f141688fe7af8d59d67154 schema:name doi
    111 schema:value 10.1007/jhep07(2018)168
    112 rdf:type schema:PropertyValue
    113 N8f7494e25e934720ab3fa058bee8f2a9 rdf:first sg:person.012335454247.74
    114 rdf:rest rdf:nil
    115 Nb388275ac0e24703b7e173d998abbda1 schema:issueNumber 7
    116 rdf:type schema:PublicationIssue
    117 Nc21a26b68a1e459e957a3687a8c35f44 schema:name dimensions_id
    118 schema:value pub.1105875050
    119 rdf:type schema:PropertyValue
    120 Nf62ced8496c2409da8215b090d33b6a0 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Mathematical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Pure Mathematics
    127 rdf:type schema:DefinedTerm
    128 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep07(2018)168
    129 rdf:type schema:MonetaryGrant
    130 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep07(2018)168
    131 rdf:type schema:MonetaryGrant
    132 sg:journal.1052482 schema:issn 1029-8479
    133 1126-6708
    134 schema:name Journal of High Energy Physics
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    138 schema:familyName Hanany
    139 schema:givenName Amihay
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    141 rdf:type schema:Person
    142 sg:person.012335454247.74 schema:affiliation grid-institutes:grid.440880.0
    143 schema:familyName Zafrir
    144 schema:givenName Gabi
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335454247.74
    146 rdf:type schema:Person
    147 sg:pub.10.1007/bf01237035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052704641
    148 https://doi.org/10.1007/bf01237035
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    151 https://doi.org/10.1007/jhep01(2014)005
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
    154 https://doi.org/10.1007/jhep02(2011)069
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep02(2015)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076696
    157 https://doi.org/10.1007/jhep02(2015)054
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep03(2016)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390804
    160 https://doi.org/10.1007/jhep03(2016)024
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    163 https://doi.org/10.1007/jhep04(2017)042
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    166 https://doi.org/10.1007/jhep04(2018)127
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    169 https://doi.org/10.1007/jhep05(2012)145
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    172 https://doi.org/10.1007/jhep06(2010)100
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    175 https://doi.org/10.1007/jhep06(2016)130
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/jhep06(2017)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886140
    178 https://doi.org/10.1007/jhep06(2017)022
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/jhep07(2015)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037227102
    181 https://doi.org/10.1007/jhep07(2015)014
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    184 https://doi.org/10.1007/jhep07(2018)061
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    187 https://doi.org/10.1007/jhep08(2012)034
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep08(2015)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004298067
    190 https://doi.org/10.1007/jhep08(2015)097
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    193 https://doi.org/10.1007/jhep09(2010)063
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    196 https://doi.org/10.1007/jhep09(2014)185
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/jhep09(2017)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002758
    199 https://doi.org/10.1007/jhep09(2017)144
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    202 https://doi.org/10.1007/jhep10(2014)152
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    205 https://doi.org/10.1007/jhep11(2016)175
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    208 https://doi.org/10.1007/jhep11(2017)126
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/jhep12(2015)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226650
    211 https://doi.org/10.1007/jhep12(2015)157
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1088/1126-6708/1998/03/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049975593
    214 https://doi.org/10.1088/1126-6708/1998/03/003
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1088/1126-6708/1999/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667186
    217 https://doi.org/10.1088/1126-6708/1999/04/021
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1088/1126-6708/1999/07/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492151
    220 https://doi.org/10.1088/1126-6708/1999/07/009
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    223 https://doi.org/10.1088/1126-6708/2007/11/050
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    226 https://doi.org/10.1088/1126-6708/2009/09/052
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.440880.0 schema:alternateName Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    229 schema:name Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    230 rdf:type schema:Organization
    231 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    232 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...